Hilbert 10 Seminar

Homework Set 15

Simon Docherty (Due Jan 21st)

In this homework we prove some properties of the Chebyshev polynomials:

$$
\begin{array}{ll}
A_{0}(T)=1 & B_{0}(T)=0 \\
A_{1}(T)=T & B_{1}(T)=1 \\
A_{n+2}(T)=2 T \cdot A_{n+1}(T)-A_{n}(T) & B_{n+2}(T)=2 T \cdot B_{n+1}(T)-B_{n}(T)
\end{array}
$$

1. Show $B_{n}(1)=m$ and $\operatorname{deg}\left(B_{n+1}\right)=n$ for all n.
2. Recall the definition of the Chebyshev polynomials given in Jetze's lecture: The n-th Chebyshev polynomials are given by $\left(T+\sqrt{T^{2}-1}\right)^{n}=X_{n}(T)+Y_{n}(T) \sqrt{T^{2}-1}$ Show the two definitions coincide.
3. In the lecture we showed the Chebyshev polynomials give solutions to the $\mathbb{Z}[T]$ Pell equation $X^{2}-\left(T^{2}-1\right) Y^{2}=1$. In this exericse we prove the sequences exhaust all solutions to the equation.

Let $U(T), V(T) \in \mathbb{Z}[T]$ be such that $[U(T)]^{2}-\left(T^{2}-1\right)[V(T)]^{2}=1$
a) Show that we may assume there exists $N \in \mathbb{Z}^{+}$such that for all $a \in \mathbb{Z}^{+}$if $a>N$ then $U(a)=a_{f(a)}$ and $V(a)=a_{f(a)}$ for some function f .
b) Show there exists $K \in \mathbb{N}$ such that for all $\mathbb{Z}^{+} \ni a>N, f(a)<K$
[Hint: Consider the characterisation of solutions of the integer Pell equation and use this to determine the behaviour of $f(a)$ as $a \rightarrow \infty]$
c) Conclude that for some $n \in \mathbb{N}: U(T)=A_{n}(T), V(T)=B_{n}(T)$

