Hilbert's Tenth Problem Seminar Homework set 16

> Eduardo Gomezcaña (Due to Jan. 28th)

Exercise 1. Let K and L be number fields with $K \subset L$. Prove that

- a) If R_1 and R_2 are Diophantine relations over O_L then $R_1 \wedge R_2$ and $R_1 \vee R_2$ are too.
- b) The relation $x \neq 0$ is Diophantine over \mathcal{O}_L .
- c) If \mathbb{Z} is Diophantine over \mathcal{O}_K and if \mathcal{O}_K is Diophantine over \mathcal{O}_L , then \mathbb{Z} is Diophantine over \mathcal{O}_L .
- d) If \mathbb{Z} is Diophantine over \mathcal{O}_L , then \mathbb{Z} is Diophantine over \mathcal{O}_K .

Exercise 2. Let L be a number field and assume \mathbb{Z} is Diophantine over \mathcal{O}_L . Prove that a relation is Diophantine over \mathcal{O}_L if and only if is recursively enumerable.