H10 Seminar: Homework set 17

Joep Horbach

Januari 28th 2014

In both exercises: Let K be a totally real number field of degree n over \mathbb{Q}. Let $\sigma_{1}, \ldots, \sigma_{n}$ be all embeddings of K into \mathbb{R}. Let $a \in \mathcal{O}_{K}$ be such that $\sigma_{1}(a) \geq 2^{2 n}$ and $\sigma_{i}(a) \leq \frac{1}{2}$ for $i=2,3, \ldots, n$.

Recall the following definitions:
We defined the sequences $x_{m}(a), y_{m}(a) \in \mathcal{O}_{K}, m \in \mathbb{N}$, by:

$$
x_{m}(a)+y_{m}(a) \sqrt{a^{2}-1}=\left(a+\sqrt{a^{2}-1}\right)^{m}
$$

We defined $\epsilon=\sigma_{1}(a)+\sqrt{\sigma_{1}(a)^{2}-1}$.
Exercise 1 Prove the following facts:
(1) $\frac{\epsilon^{m}}{4 \sigma_{1}(a)}<\sigma_{1}\left(y_{m}(a)\right)<\frac{\epsilon^{m}}{\sigma_{1}(a)}$
(2) $\left|\sigma_{i}\left(y_{m}(a)\right)\right|<2$ for $i=2,3, \ldots, n$
(3) $\epsilon^{m} / 2<\sigma_{1}\left(x_{m}(a)\right)<\epsilon^{m}$
(4) $\left|\sigma_{i}\left(x_{m}(a)\right)\right|<1$ for $i=2,3, \ldots, n$

Exercise 2

Let $\left|\sigma_{i}(a)\right| \leq \frac{1}{8}$ for all $i \neq 1$ and $m \in \mathbb{N}_{>0}$. Prove that there exists $s \in \mathbb{N}$ such that $b=x_{m}(a)^{2 s}+a\left(1-x_{m}(a)^{2}\right)$ satisfies the following three properties:
(i) $b \equiv 1 \bmod y_{m}(a)$
(ii) $b \equiv a \bmod x_{m}(a)$
(iii) $\sigma_{1}(b) \geq 2^{2 n}$ and $\sigma_{i}(b) \leq \frac{1}{2}$ for $i=2,3, \ldots, n$.

