Seminar H10: exercises week 2

(Presentation: Nils Donselaar)

Due 7 October 2013

Exercise 1

For natural numbers k, let S_{k} be the sequence of digits $k(k-1) \ldots 10$. Give an exponential Diophantine equation $E_{L}(a, b)=E_{R}(a, b)$ such that we have $\forall k \exists x E_{L}(x, k)=E_{R}(x, k)$ and $\forall x \forall k\left(E_{L}(x, k)=E_{R}(x, k) \rightarrow \exists b\left(\widetilde{x}(b)=S_{k}\right)\right)$, where $\widetilde{x}(b)$ denotes the digit representation of x relative to base b. Does this yield a exponential Diophantine representation of the relation $R(x, k): \Leftrightarrow$ $\exists b\left(\widetilde{x}(b)=S_{k}\right)$?

Exercise 2

Let $m(x)=k$ express that x masks exactly k numbers.
a) Give an exponential Diophantine representation of the property $m(x)=2$.
b) Let b and c be natural numbers such that $b \preceq c$. Give a formula which expresses $m(c-b)$ in terms of $m(c), m(b)$ and $m(b \wedge c)$.
c) Can you give a similar formula for arbitrary b and c (i.e., b and c for which the condition $b \preceq c$ does not necessarily hold)?

