Seminar on Hilbert's Tenth Problem Homework, due October 14

Jetze Zoethout

Exercise 1.

In this exercise, we will prove our second congruence property.

We can extend the sequence $\alpha_{b}(n)$ to all $n \in \mathbb{Z}$ by extending our recurrence relation to all of \mathbb{Z}. That is: we put $\alpha_{b}(n+2)=b \alpha_{b}(n+1)-\alpha_{b}(n)$ for all $n \in \mathbb{Z}$. Of course, this also gives us an extension of $A_{b}(n)$ to all $n \in \mathbb{Z}$.
a) Prove that $\alpha_{b}(-n)=-\alpha_{b}(n)$ for all $n \in \mathbb{N}$ and that $A_{b}(n)=B_{b}^{n}$ for all $n \in \mathbb{Z}$.
b) Using these results, find $A_{b}^{-1}(n)$.

Let j, l, m, n be natural numbers such that $n=2 l m \pm j$ en define $v=\alpha_{b}(m+1)-\alpha_{b}(m-1)$.
c) Prove that $A_{b}(m) \equiv-A_{b}^{-1}(m) \bmod v$.
d) Show that $A_{b}(n) \equiv \pm\left(A_{b}(j)\right)^{ \pm 1} \bmod v$.
e) Prove the second congruence property, i.e. $\alpha_{b}(n) \equiv \pm \alpha_{b}(j) \bmod v$.

For d) and e), please note that the $\pm-\operatorname{sign}(\mathrm{s})$ do(es) not necessarily correspond with the one in $n=2 l m \pm j$.

Exercise 2.

Let $b \geq 2$ and x be natural numbers.
a) Prove that $x=\alpha_{b}(m)$ for some $m \in \mathbb{N}$ if and only if $4+\left(b^{2}-4\right) x^{2}$ is a square. Hint: consider the characteristic equation.

Define the Fibonacci numbers by $F_{0}=0, F_{1}=1$ and $F_{n+2}=F_{n+1}+F_{n}$ for all $n \in \mathbb{N}$. We will now prove a nice property of these numbers.
b) Prove that $\alpha_{3}(n)=F_{2 n}$ for all $n \in \mathbb{N}$. Conclude that $5 x^{2}+4$ is a square if and only if x is of the form $x=F_{2 n}$.

Let $c \geq 2$ be a natural number. Consider the Pell equation $x^{2}-\left(c^{2}-1\right) y^{2}=1$.
c) Prove that

$$
\left\{y \in \mathbb{N}: \exists x \in \mathbb{N}\left(x^{2}-\left(c^{2}-1\right) y^{2}=1\right)\right\}=\left\{\alpha_{2 c}(n): n \in \mathbb{N}\right\}
$$

