1 Register machine A

Give a full description of a register machine $R M_{A}$ that, on input x in register 1 , halts when x is equal to 2 modulo 5 and never stops otherwise. (Note, all other registers are empty. The same goes for the other machines in the other exercises.)

2 Register machine B

What does the following register machine do on input x in register r_{1}, s_{1} being the starting state? Briefly explain your answer.
$R M_{B}=\left(\left\{s_{1}, s_{2}, s_{3}\right\},\left\{r_{1}, r_{2}\right\}\right)$
Where s_{1} is the instruction $s_{1}: r_{1}--; s_{2} ; s_{3}$, the instruction s_{2} is defined as $s_{2}: r_{2}++; s_{1}$ and the instruction s_{3} is the halting state.

3 Register machine C

Give a description ${ }^{1}$ of a register machine $R M_{C}$ that, on input x in register 1, increases some register r_{i} to the value $\binom{x}{2}$ and sets all other registers equal to zero before halting.

4 Register machine D

What does the following register machine do on input x in register r_{1}, where s_{a} is the starting state? Briefly explain your answer.
$R M_{D}=\left(\left\{s_{a}, s_{0}, s_{1}, s_{2}, s_{3}, s_{c 1}, s_{c 2}, s_{s t o p}\right\},\left\{r_{1}, r_{2}, r_{3}\right\}\right)$
Where we have:
$s_{a}: r_{2}++; s_{0}$
$s_{0}: r_{1}--; s_{1} ; s_{\text {stop }}$
$s_{1}: r_{2}--; s_{2} ; s_{c 1}$
$s_{2}: r_{3}++; s_{3}$
$s_{3}: r_{3}++; s_{1}$
$s_{c 1}: r_{3}--; s_{c 2} ; s_{0}$
$s_{c 2}: r_{2}++; s_{c 1}$
$s_{\text {stop }}: S T O P$

[^0]
[^0]: ${ }^{1}$ A full description of the machine can be rather lengthy, so it suffices to describe what the machine does while making clear that it is possible to do this on a register machine.

