Seminar Hilbert 10 - Homework 5

Eric Faber

Due: October 28

In these exercises, \mathcal{F}_0 is the class of functions in real variables represented by expressions combining the variables with integers and the number π by addition, substraction, multiplication and the sin function.

Exercise 1 We have shown that there is no algorithm for deciding for an arbitrary $\Phi(\chi_1, \ldots, \chi_m) \in \mathcal{F}_0$ whether

$$\exists \chi_1, \ldots, \chi_m \Phi(\chi_1, \ldots, \chi_m) = 0$$

In this exercise, we'll improve this result by showing that it is undecidable to determine whether

$$\exists \chi_1, \ldots, \chi_m \Phi(\chi_1, \ldots, \chi_m) < 1$$

for arbitrary $\Phi \in \mathcal{F}_0$. To do this, we need to modify the function

$$D^2(\chi_1,\ldots,\chi_m) + \sin^2(\pi\chi_1) + \ldots + \sin^2(\pi\chi_m)$$

such that it takes values 0 precisely when the above does, and values > 1 otherwise. Of course, the function still needs to be in \mathcal{F}_0 .

a) For χ_1, \ldots, χ_m arbitrary real numbers, we denote by (x_1, \ldots, x_m) the point with integer coordinates closest to (χ_1, \ldots, χ_m) . The distance between them is denoted by ϵ . Show that there is a polynomial B (computable in D!) such that for all χ_1, \ldots, χ_m :

$$|D^2(\chi_1,\ldots,\chi_m) - D^2(x_1,\ldots,x_m)| < B(\chi_1,\ldots,\chi_m)\epsilon.$$

Hint: Use Taylor's theorem.

Conclude that for

$$\epsilon < \frac{1}{2B(\chi_1, \dots, \chi_m)}$$

$$D^2(\chi_1, \dots, \chi_m) > \frac{1}{2}$$
(1)

we have

if
$$D(x_1,\ldots,x_n) \neq 0$$
.

b) Show that if (1) does not hold, we have:

$$\sin^2(\pi\chi_1) + \ldots + \sin^2(\pi\chi_m) \ge \frac{1}{B^2(\chi_1, \ldots, \chi_m)}.$$

c) Conclude that there is no algorithm for deciding for an arbitrary function $\Phi \in \mathcal{F}_0$ whether the inequality

$$\Phi(\chi_1,\ldots,\chi_m)<1.$$

has a solution in real χ_1, \ldots, χ_m .

Exercise 2 In this exercise, we'll improve the undecidability result about functions in \mathcal{F}_0 to the same result about functions in \mathcal{F}_0 with only one real variable. The key is to prove that the image of the map

 $\chi \mapsto (\chi \sin(\chi), \chi \sin(\chi^3), \dots, \chi \sin(\chi^{2m-1}))$

lies dense in \mathbb{R}^m . For every m, we denote this map by f_m .

We will first prove the case where m = 2.

a) Let $y_1, y_2, \delta \in \mathbb{R}$ be arbitrary real numbers, with $\delta > 0$. Show that there are reals χ_1, χ_2 such that:

- (i) $\chi_2 > \chi_1 > |y_2|$
- (ii) $\chi_2 \sin(\chi_2) = y_1$
- (iii) $\chi_2^3 \chi_1^3 > 2\pi$
- (iv) $(\chi_2 \chi_1)(\chi_2 + 1) < \delta$.

Hint: Choose an appropriate χ_1 and define $\chi_2 = (\chi_1^2 + \delta/2)^{1/2}$.

b) Let $y_1, y_2, \delta \in \mathbb{R}$ be arbitrary real numbers, with $\delta > 0$. Show that there is a χ such that

$$f_1(\chi) - y_1| < \delta$$
 and $f_2(\chi) = y_2$.

Conclude that the image of f_2 lies dense in \mathbb{R}^2 . *Hint:* Choose an appropriate χ between χ_1 and χ_2 in (a) and use the mean value theorem on $f_1(\chi) - y_1 = f_1(\chi) - f_1(\chi_2)$ to make an estimate.

c) Let $y_1, \ldots, y_m, y_{m+1}, \delta \in \mathbb{R}$ be arbitrary real numbers, with $\delta > 0$. Suppose f is a function such that $f(]\chi, \infty[)$ lies dense in \mathbb{R}^m for any χ . Show that there are reals χ_1, χ_2 such that:

- (i) $\chi_2 > \chi_1 > |y_{m+1}|$
- (ii) $|f(\chi_2) (y_1, \dots, y_m)| < \delta$
- (iii) $\chi_2^{2m+1} \chi_1^{2m+1} > 2\pi$
- (iv) $(\chi_2 \chi_1)((2m-1)\chi_2^{2m-1} + 1) < \delta$.

Hint: Modify the proof in (a).

d) Prove that the image of f_m lies dense in \mathbb{R}^m , for every $m \ge 1$.

e) Show, using exercise 1, that there is no algorithm for deciding for an arbitrary function $\Psi \in \mathcal{F}_0$ in one real variable whether the equation

$$\Psi(\chi) < 1$$

has a real solution χ .