Seminar Hilbert 10 - Homework 5

Eric Faber

Due: October 28

In these exercises, \mathcal{F}_{0} is the class of functions in real variables represented by expressions combining the variables with integers and the number π by addition, substraction, multiplication and the sin function.

Exercise 1 We have shown that there is no algorithm for deciding for an arbitrary $\Phi\left(\chi_{1}, \ldots, \chi_{m}\right) \in$ \mathcal{F}_{0} whether

$$
\exists \chi_{1}, \ldots, \chi_{m} \Phi\left(\chi_{1}, \ldots, \chi_{m}\right)=0
$$

In this exercise, we'll improve this result by showing that it is undecidable to determine whether

$$
\exists \chi_{1}, \ldots, \chi_{m} \Phi\left(\chi_{1}, \ldots, \chi_{m}\right)<1
$$

for arbitrary $\Phi \in \mathcal{F}_{0}$. To do this, we need to modify the function

$$
D^{2}\left(\chi_{1}, \ldots, \chi_{m}\right)+\sin ^{2}\left(\pi \chi_{1}\right)+\ldots+\sin ^{2}\left(\pi \chi_{m}\right)
$$

such that it takes values 0 precisely when the above does, and values >1 otherwise. Of course, the function still needs to be in \mathcal{F}_{0}.
a) For $\chi_{1}, \ldots, \chi_{m}$ arbitrary real numbers, we denote by $\left(x_{1}, \ldots, x_{m}\right)$ the point with integer coordinates closest to $\left(\chi_{1}, \ldots, \chi_{m}\right)$. The distance between them is denoted by ϵ. Show that there is a polynomial B (computable in $D!$) such that for all $\chi_{1}, \ldots, \chi_{m}$:

$$
\left|D^{2}\left(\chi_{1}, \ldots, \chi_{m}\right)-D^{2}\left(x_{1}, \ldots, x_{m}\right)\right|<B\left(\chi_{1}, \ldots, \chi_{m}\right) \epsilon
$$

Hint: Use Taylor's theorem.
Conclude that for

$$
\begin{equation*}
\epsilon<\frac{1}{2 B\left(\chi_{1}, \ldots, \chi_{m}\right)} \tag{1}
\end{equation*}
$$

we have

$$
D^{2}\left(\chi_{1}, \ldots, \chi_{m}\right)>\frac{1}{2}
$$

if $D\left(x_{1}, \ldots, x_{n}\right) \neq 0$.
b) Show that if (1) does not hold, we have:

$$
\sin ^{2}\left(\pi \chi_{1}\right)+\ldots+\sin ^{2}\left(\pi \chi_{m}\right) \geq \frac{1}{B^{2}\left(\chi_{1}, \ldots, \chi_{m}\right)}
$$

c) Conclude that there is no algorithm for deciding for an arbitrary function $\Phi \in \mathcal{F}_{0}$ whether the inequality

$$
\Phi\left(\chi_{1}, \ldots, \chi_{m}\right)<1
$$

has a solution in real $\chi_{1}, \ldots, \chi_{m}$.
Exercise 2 In this exercise, we'll improve the undecidability result about functions in \mathcal{F}_{0} to the same result about functions in \mathcal{F}_{0} with only one real variable. The key is to prove that the image of the map

$$
\chi \mapsto\left(\chi \sin (\chi), \chi \sin \left(\chi^{3}\right), \ldots, \chi \sin \left(\chi^{2 m-1}\right)\right.
$$

lies dense in \mathbb{R}^{m}. For every m, we denote this map by f_{m}.
We will first prove the case where $m=2$.
a) Let $y_{1}, y_{2}, \delta \in \mathbb{R}$ be arbitary real numbers, with $\delta>0$. Show that there are reals χ_{1}, χ_{2} such that:
(i) $\chi_{2}>\chi_{1}>\left|y_{2}\right|$
(ii) $\chi_{2} \sin \left(\chi_{2}\right)=y_{1}$
(iii) $\chi_{2}^{3}-\chi_{1}^{3}>2 \pi$
(iv) $\left(\chi_{2}-\chi_{1}\right)\left(\chi_{2}+1\right)<\delta$.

Hint: Choose an appropriate χ_{1} and define $\chi_{2}=\left(\chi_{1}^{2}+\delta / 2\right)^{1 / 2}$.
b) Let $y_{1}, y_{2}, \delta \in \mathbb{R}$ be arbitary real numbers, with $\delta>0$. Show that there is a χ such that

$$
\left|f_{1}(\chi)-y_{1}\right|<\delta \text { and } f_{2}(\chi)=y_{2}
$$

Conclude that the image of f_{2} lies dense in \mathbb{R}^{2}. Hint: Choose an appropriate χ between χ_{1} and χ_{2} in (a) and use the mean value theorem on $f_{1}(\chi)-y_{1}=f_{1}(\chi)-f_{1}\left(\chi_{2}\right)$ to make an estimate.
c) Let $y_{1}, \ldots, y_{m}, y_{m+1}, \delta \in \mathbb{R}$ be arbitary real numbers, with $\delta>0$. Suppose f is a function such that $f(] \chi, \infty[)$ lies dense in \mathbb{R}^{m} for any χ. Show that there are reals χ_{1}, χ_{2} such that:
(i) $\chi_{2}>\chi_{1}>\left|y_{m+1}\right|$
(ii) $\left|f\left(\chi_{2}\right)-\left(y_{1}, \ldots, y_{m}\right)\right|<\delta$
(iii) $\chi_{2}^{2 m+1}-\chi_{1}^{2 m+1}>2 \pi$
(iv) $\left(\chi_{2}-\chi_{1}\right)\left((2 m-1) \chi_{2}^{2 m-1}+1\right)<\delta$.

Hint: Modify the proof in (a).
d) Prove that the image of f_{m} lies dense in \mathbb{R}^{m}, for every $m \geq 1$.
e) Show, using exercise 1, that there is no algorithm for deciding for an arbitary function $\Psi \in \mathcal{F}_{0}$ in one real variable whether the equation

$$
\Psi(\chi)<1
$$

has a real solution χ.

