Homework set 6

Hilbert's tenth problem seminar, Fall 2013, due November 4th

By Niels Voorneveld

Exercise 1: Over all integers (not only positive ones), we can define a new successor operation S (Where $S(a)$ gives the smallest number higher than a). The first three exercises are about arithmetically defining things in terms of this S and multiplication (\cdot).
a) Arithmetically define 0 (zero) in terms of S and multiplication (\cdot) over all integers.
b) Use the result in a) to prove that any constant $n \in \mathbf{Z}$ is arithmetically definable in terms of S and multiplication (\cdot).
c) Show that addition of integers is arithmetically definable in terms of the successor operator S and multiplication (\cdot). (Hint: Improve the original result which used the statement $S(a \cdot c) \cdot S(b \cdot c)=S[(c \cdot c) \cdot S(a \cdot b)])$

Exercise 2: Over the rationals, we have seen that the notion of an integer (Int) is arithmetically definable in terms of + and - over rationals. Use this to prove that the following concepts are arithmetically definable in terms of addition $(+)$ and multiplication (\cdot).
a) Prove that $a=\operatorname{den}(b)$ is arithmetically definable in terms of + and \cdot over rationals. Where $\operatorname{den}(b)$ is the smallest possible positive denominator of b. (example: $\operatorname{den}(-6 / 8)=4)$
b) Prove that $a>b$ is arithmetically definable in terms of + and \cdot over rationals.
c) Prove that $a=\lfloor b\rfloor$ is arithmetically definable in terms of + and over rationals. Where $\lfloor b\rfloor$ is b rounded down to an integer (floor operator).

Exercise 3: Consider the following system of axioms using the symbol Pos (meaning it is a positive integer) and the two mathematical constants + and $\cdot:$
B1: $\exists c: \mathcal{U}(c)$
B2: $\forall a, b, c:\{[\operatorname{Pos}(a) \wedge \operatorname{Pos}(b) \wedge \mathcal{U}(c) \wedge(a+c=b+c)] \rightarrow a=b\}$
B3: $\forall a, b, c:\{[\operatorname{Pos}(a) \wedge \operatorname{Pos}(b) \wedge \mathcal{U}(c)] \rightarrow a+(b+c)=(a+b)+c\}$
B4: $\forall a, c:\{[\operatorname{Pos}(a) \wedge \mathcal{U}(c)] \rightarrow a \cdot c=a\}$
B5: $\forall a, b, c:\{[\operatorname{Pos}(a) \wedge \operatorname{Pos}(b) \wedge \mathcal{U}(c)] \rightarrow a \cdot(b+c)=(a \cdot b)+a\}$
B6: $\forall c:\{[\mathcal{U}(c) \wedge \Phi(c) \wedge(\forall a:[\operatorname{Pos}(a) \wedge \Phi(a)] \rightarrow \Phi(a+c))] \rightarrow \forall a:(\operatorname{Pos}(a) \rightarrow \Phi(a))\}$
Where $\mathcal{U}(c)$ is true if and only if $\{\operatorname{Pos}(c) \wedge(\forall x, y:[\operatorname{Pos}(x) \wedge \operatorname{Pos}(y)] \rightarrow \sim(x+y=c))\}$, hence $\mathcal{U}(c) \leftrightarrow c=1$.
In this axiom system, B 6 is true for any statement $\Phi(a)$ with free variable a. B6 basically says that we can use induction on one positive integer.

Prove that the following 3 statements ($\mathrm{B} 7, \mathrm{~B} 8, \mathrm{~B} 9$) are provable in terms of the axioms in the axiom system defined above (B1-B6):
B7: $\forall a, b, c:\{[\operatorname{Pos}(a) \wedge \operatorname{Pos}(b) \wedge \operatorname{Pos}(c) \wedge(a+c=b+c)] \rightarrow a=b\}$
B8: $\forall a, b:\{[\operatorname{Pos}(a) \wedge \operatorname{Pos}(b)] \rightarrow a+b=b+a\}$
B9: $\forall a, b, c:\{[\operatorname{Pos}(a) \wedge \operatorname{Pos}(b) \wedge \operatorname{Pos}(c)] \rightarrow a+(b+c)=(a+b)+c\}$

