Hilbert 10 Seminar

Homework Set 7

Simon Docherty (Due Nov. 11)

1. Consider the ring $\mathbb{Z}[\sqrt{a^2-1}] = \{x + y\sqrt{a^2-1} \mid x, y \in \mathbb{Z}\}.$ Define for $z = x + y\sqrt{a^2-1}$:

$$\overline{z} := x - y\sqrt{a^2 - 1}$$
$$N(z) := z\overline{z}$$

- a) Prove $G = \{z \in \mathbb{Z}[\sqrt{a^2 1}] \mid N(z) = 1\}$ forms an infinite abelian group under multiplication.
- b) Show there exists least such $z_0 > 1$ with $N(z_0) = 1$. Show G is generated by $\{z_0, -1\}$.
- c) Conclude for all $x, y \in \mathbb{N}$:

$$x^{2} - (a^{2} - 1)y^{2} = 1 \iff \exists n \left[x + y(a^{2} - 1)^{1/2} = (a + (a^{2} - 1)^{1/2})^{n} \right]$$

- 2. Let R be a relation of roughly exponential growth order n; that is:
 - i) $\forall u, v [Ruv \implies v < u * n]$
 - ii) $\forall k \exists u, v \left[Ruv \land u^k \le v \right]$

where u * 0 = 1 and $u * (n + 1) = u^{u * n}$

- a) Assume $\exists k \forall u, v \left[Ruv \implies v < u^{ku} \right]$ Define $\mathcal{J}xy$ iff $\exists v \left[Rxv \land y^k \leq v \right]$ Show \mathcal{J} is a Robinson Relation.
- b) Assume $\neg \exists k \forall u, v \left[Ruv \implies v < u^{ku} \right]$ Consider R_1 defined by R_1uv iff $\exists a \left[\psi(a, u) \land Rav \right]$ where

$$\psi(a,u) \iff \exists x, y \left[x^2 - (a^2 - 1)(a - 1)^2 y^2 = 1 \land x > 1 \land a > 1 \land u = ax \right]$$

- i) Show $\forall a > 1 \exists u \left[\psi(a, u) \land u < a^{2a} \right]$
- ii) Show R_1 is a relation of roughly exponential growth order n-1.
- c) Conclude: Given a relation of roughly exponential growth R, a Robinson Relation \mathcal{J} is existentially definable in terms of R.