Hilbert 10 Seminar

Homework Set 7

Simon Docherty (Due Nov. 11)

1. Consider the ring $\mathbb{Z}\left[\sqrt{a^{2}-1}\right]=\left\{x+y \sqrt{a^{2}-1} \mid x, y \in \mathbb{Z}\right\}$.

Define for $z=x+y \sqrt{a^{2}-1}$:

$$
\begin{aligned}
\bar{z} & :=x-y \sqrt{a^{2}-1} \\
N(z) & :=z \bar{z}
\end{aligned}
$$

a) Prove $G=\left\{z \in \mathbb{Z}\left[\sqrt{a^{2}-1}\right] \mid N(z)=1\right\}$ forms an infinite abelian group under multiplication.
b) Show there exists least such $z_{0}>1$ with $N\left(z_{0}\right)=1$. Show G is generated by $\left\{z_{0},-1\right\}$.
c) Conclude for all $x, y \in \mathbb{N}$:

$$
x^{2}-\left(a^{2}-1\right) y^{2}=1 \Longleftrightarrow \exists n\left[x+y\left(a^{2}-1\right)^{1 / 2}=\left(a+\left(a^{2}-1\right)^{1 / 2}\right)^{n}\right]
$$

2. Let R be a relation of roughly exponential growth order n; that is:
i) $\forall u, v[R u v \Longrightarrow v<u * n]$
ii) $\forall k \exists u, v\left[R u v \wedge u^{k} \leq v\right]$
where $u * 0=1$ and $u *(n+1)=u^{u * n}$
a) Assume $\exists k \forall u, v\left[R u v \Longrightarrow v<u^{k u}\right]$

Define $\mathcal{J} x y$ iff $\exists v\left[R x v \wedge y^{k} \leq v\right]$
Show \mathcal{J} is a Robinson Relation.
b) Assume $\neg \exists k \forall u, v\left[R u v \Longrightarrow v<u^{k u}\right]$

Consider R_{1} defined by $R_{1} u v$ iff $\exists a[\psi(a, u) \wedge R a v]$ where

$$
\psi(a, u) \Longleftrightarrow \exists x, y\left[x^{2}-\left(a^{2}-1\right)(a-1)^{2} y^{2}=1 \wedge x>1 \wedge a>1 \wedge u=a x\right]
$$

i) Show $\forall a>1 \exists u\left[\psi(a, u) \wedge u<a^{2 a}\right]$
ii) Show R_{1} is a relation of roughly exponential growth order $n-1$.
c) Conclude: Given a relation of roughly exponential growth R, a Robinson Relation \mathcal{J} is existentially definable in terms of R.

