
Model Solution Homework

Saskia van den Hoeven

Exercise 1

Prove that the class of Diophantine relations is closed under unbounded ex-
istential quantification, logical ‘and’, logical ‘or’, and bounded existential quan-
tification.

Answer of exercise 1

Let R be an (n+1)-ary Diophantine relation. Then by definition R(a1, . . . , an, y)⇔
∃x1, . . . , xm(D(x1, . . . , xm, a1, . . . , an, y) = 0). Consider the relation S(a1, . . . , an)
defined by S(a1, . . . , an)⇔ ∃yR(a1, . . . , an, y). Then

S(a1, . . . , an)⇔ ∃y∃x1, . . . , xm(D(x1, . . . , xm, a1, . . . , an, y) = 0)

⇔ ∃x1, . . . , xm, y(D(x1, . . . , xm, a1, . . . , an, y) = 0)

hence S is a Diophantine relation.
Suppose R1 and R2 are both Diophantine relations. Then by definition

R1(a1, . . . , an)⇔ ∃x1, . . . , xkD1(a1, . . . , an, x1, . . . , xk) = 0

R2(a1, . . . , an)⇔ ∃x1, . . . , xlD2(a1, . . . , an, x1, . . . , xl) = 0.

Define S1 = R1 ∧R2 and S2 = R1 ∨R2.
Consider the polynomial P1(a1, . . . , an, x1, . . . , xk+l) = D2

1(a1, . . . , an, x1, . . . , xk)+
D2

2(a1, . . . , an, xk+1, . . . , xk+l). Then

S1(a1, . . . , an)⇔ R1(a1, . . . , an) ∧R2(a1, . . . , an)

⇔ ∃x1, . . . , xkD1(a1, . . . , an, x1, . . . , xk) = 0 and ∃x1, . . . , xlD2(a1, . . . , an, x1, . . . , xl) = 0

⇔ ∃x1, . . . , xk+lP1(a1, . . . , an, x1, . . . , xk+l) = 0.

Thus S1 is a Diophantine relation.
Consider the polynomial P2(a1, . . . , an, x1, . . . , xk+l) = D1(a1, . . . , an, x1, . . . , xk)·

D2(a1, . . . , an, xk+1, . . . , xk+l). Then

S2(a1, . . . , an)⇔ R1(a1, . . . , an) ∨R2(a1, . . . , an)

⇔ ∃x1, . . . , xkD1(a1, . . . , an, x1, . . . , xk) = 0 or ∃x1, . . . , xlD2(a1, . . . , an, x1, . . . , xl) = 0

⇔ ∃x1, . . . , xk+lP2(a1, . . . , an, x1, . . . , xk+l) = 0.

Thus S2 is a Diophantine relation.
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The relation < is Diophantine, since x < y ⇔ ∃z(x + z + 1 = y). Let R be
an (n+1)-ary Diophantine relation. Consider the relation S(a1, . . . , an) defined
by S(a1, . . . , an)⇔ ∃y < t(R(a1, . . . , an, y)) for any t ∈ N. Then

S(a1, . . . , an)⇔ ∃y < t(R(a1, . . . , an, y))

⇔ ∃y(y < t ∧R(a1, . . . , an, y)).

Since the set of Diophantine relations is closed under conjunction, S is a Dio-
phantine set.

For each of these problems: recognizing what needs to be done yields one
point, carrying it out yields one point.

Exercise 2

Show that a set of natural numbers is Diophantine if and only if it is the set
of all natural number values assumed by some polynomial with integer coeffi-
cients for natural number values of its variables. In light of this, using Davis’s
conjecture, what can you say about the set of prime numbers?

Answer of exercise 2

Let M be a Diophantine set of natural numbers. Then

a ∈M ⇔ ∃x1, . . . , xkD(a, x1, . . . , xk) = 0.

The equation
D(a, x1, . . . , xk) = 0

has a solution in unknowns x1, . . . , xk if and only if the equation

(x0 + 1)(1−D2(x0, . . . , xk))− 1 = a

has a solution in unknowns x0, . . . , xk. (2,5 points)
In fact, if we have a solution of the first equation it can be expanded to a

solution of the second equation by putting x0 = a. Also, if we have a solution
of the second equation, the factor 1 −D2(x0, . . . , xm) must be positive, which
is possible only if D(x0, . . . , xm) = 0 holds. But that implies that x0 = a and
hence that the first equation also holds. (2,5 points)

Now let M be the set of all natural number values assumed by some poly-
nomial D(x1, . . . , xk). Then n ∈ M ⇔ ∃x1, . . . , xk(D(x1, . . . , xk) = n) ⇔
∃x1, . . . , xk(D(x1, . . . , xk)− n = 0). Hence M is Diophantine. (1,5 points)

The set of all primes is easily seen to be listable. By Davis’ Conjecture, it
is then Diophantine. This implies the existence of a polynomial such that the
set of all its non-negative values is exactly the set of all prime numbers. (1,5
points)
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