Model Solution Homework 10

Saskia van den Hoeven

1. Let $n, m \in \mathbb{Z}_{+}$. Prove that $n \mid m$ if and only if $p^{n}-1 \mid p^{m}-1$.

Solution: Suppose $n \mid m$. Then

$$
p^{m}-1=\left(p^{n}-1\right)\left(1+p^{n}+\ldots+p^{(k-1) n}\right)
$$

for $m=n k$ so $p^{n}-1 \mid p^{m}-1$. (1 point)
Now suppose $p^{n}-1 \mid p^{m}-1$. Let $m=q n+r$ with $0 \leq r<n$. Then

$$
p^{q n+r}-1=\left(p^{n}-1\right) \cdot\left(p^{(q-1) n+r}+\ldots+p^{n+r}+p^{r}\right)+p^{r}-1
$$

and $p^{n}-1 \mid p^{m}-1$ so $p^{n}-1 \mid p^{r}-1$. But also $p^{r}-1<p^{n}-1$, so $p^{r}=1$, so $r=0$. (1 point)
2. Let $s, r \in \mathbb{Z}_{+}$and let $s \geq 1$. Prove that $\left(p^{s r}-1\right) /\left(p^{s}-1\right) \equiv r \bmod p^{s}-1$.

Solution: $\left(p^{s r}-1\right) /\left(p^{s}-1\right)=p^{s(r-1)}+p^{s(r-2)}+\ldots+p^{s}+1$ and $p^{s} \equiv 1 \bmod p^{s}-1$, hence the result follows. (1 point)
3. Prove that the relation $m=n k$ is Diophantine over \mathbb{N} in the language $L_{0}=\{0,1,+, / p, P, t\}$.

Solution: In the lecture we proved that the relation $m=p^{s} n$ is Diophantine over \mathbb{N} in L_{0}. We have also proven that $m=n^{2}$ if and only if

$$
\begin{gathered}
\exists s, r \in \mathbb{Z}_{+}\left(\left(p^{2 s}-1\right) /\left(p^{r}-1\right),\left(p^{r}-1\right) /\left(p^{2 s}-1\right) \equiv n \bmod p^{2 s}-1, n<p^{s}-1\right. \\
\left.\left(\left(p^{r}-1\right) /\left(p^{2 s}-1\right)\right)^{2} \equiv m \bmod p^{2 s}-1 \text { and } m<p^{2 s}-1\right)
\end{gathered}
$$

We can find a Diophantine expression in L_{0} equivalent to this, since $m=p^{s} n$ is Diophantine and

$$
\begin{gathered}
\left(p^{2 s}-1\right) \mid\left(p^{r}-1\right) \Leftrightarrow \\
\exists x\left(x p^{2 s}-x=p^{r}-1\right) \\
\left(p^{r}-1\right) /\left(p^{2 s}-1\right) \equiv n \bmod p^{2 s}-1 \Leftrightarrow \\
\exists k \in \mathbb{Z}_{+}\left(\left(p^{r}-1\right)=\left(k\left(p^{2 s}-1\right)+n\right)\left(p^{2 s}-1\right)\right), \\
n<p^{s}-1 \Leftrightarrow \\
\exists a\left(n+a+1=p^{s}-1\right) \\
\left(p^{x}-1\right)^{2} \Leftrightarrow \\
\exists k\left(m=k\left(p^{x}-1\right) \wedge k=p^{x}-1\right)
\end{gathered}
$$

Hence the relation $m=n^{2}$ is Diophantine in L_{0}. (3 points) We have that $m=n k$ if and only if $(n+k)^{2}=n^{2}+2 m+k^{2}$, hence $m=n k$ is Diophantine over \mathbb{N} in L_{0}. (1 point)
4. We have proven that the existential problem for $F[[t]]$ in the language $L=\{0,1,+, \cdot, P, t\}$ is undecidable. Prove that for a ring R such that $F[t] \subset R \subset K((t))$, the existential problem for R in the language L is undecidable too.
Solution: Undecidability for $F[[t]]$ followed from coding the Diophantine problem for \mathbb{N} and $/ p$ into the existential problem for $F[[t]]$ and \cdot. We can use the same definitions for R. (2 points) (The goal of this exercise was not necessarily to give a very detailed answer but to go over the whole proof once again.)

