Model solution exercises week 11

(Presentation: Nils Donselaar)

Exercise 1

a) Give a proof of Lemma 2, i.e. prove that if F is a field of characteristic $p \geq 3$, then for all $x \in F(t)$ the expression $u=\frac{x^{p}+t}{x^{p}-t}$ has only simple zeroes and poles. (3 pts.)
b) Using Lemma 2, complete the proof of Lemma 3 discussed during the presentation by proving the right-to-left direction for the case where $s>0$ and y is not a p-th power of any function $z \in \bar{F}(t)$. (4 pts.)
a) Write $x=\frac{a}{b}$ in its unique way. Now $u=\frac{\left(\frac{a}{b} p^{p}+t\right.}{\left(\frac{a}{b}\right)^{p}-t}=\frac{a^{p}+t b^{p}}{a^{p}-t b^{p}}$. Let q be a prime of $F[t]$ such that $q^{2} \mid a^{p}+t b^{p}$. Then q divides $\frac{d}{d t}\left(a^{p}+t b^{p}\right)=b^{p}$; but then q is a prime such that both $q \mid a^{p}+t b^{p}$ and $q \mid b^{p}$, hence also $q \mid a^{p}$. This would mean that $q \mid a$ and $q \mid b$, but this cannot occur since a, b coprime, so u only has simple zeroes. The case for poles is entirely symmetrical: if $q^{2} \mid a^{p}-t b^{p}$, then q divides $\frac{d}{d t}\left(a^{p}-t b^{p}\right)=-b^{p}$, and so $q \mid a^{p}$ by that fact that $q \mid a^{p}-t b^{p}$ is also true. This would again mean that $q \mid a$ and $q \mid b$ are both true, which is impossible, so u also has only simple poles. Points awarded: 1 for rewriting u by taking x as a unique fraction; $1 \frac{1}{2}$ for showing how we get a contradiction from assuming that we have a zero/pole of higher multiplicity; $\frac{1}{2}$ for pointing out how the argument can be extended to poles/zeroes.
b) Assume $s>0$ and y is not a p-th power of any function $z \in \bar{F}(t)$. If $v=w^{p}$ for some $w \in \bar{F}(t)$, then $v=\frac{y+t^{p}}{y-t^{s}}=w^{p}$. From this we obtain $y+t^{p^{s}}=w^{p}\left(y-t^{p^{s}}\right)$, which in turn gives $y\left(1-w^{p}\right)=-t^{p^{s}}\left(w^{p}+1\right)$ which because of characteristic p is equal to $y(1-w)^{p}=-\left(t^{p^{s}-1}(w+1)\right)^{p}$. Since $\operatorname{char}(F) \neq 2, w=1$ is impossible (for this would lead to $y+t^{p^{s}}=y-t^{p^{s}}$), but now $y=\left(t^{p^{s}-1} \frac{w+1}{w-1}\right)^{p}$ which contradicts our assumption that y is not a p-th power, hence v is not a p-th power. Suppose $q \neq t$ is a prime in $F[t]$ such that $\operatorname{ord}_{q} v<0, p \nmid \operatorname{ord}_{q} v$. Now if $\operatorname{ord}_{q}\left(\sigma^{p}-\sigma\right)<0$, then $p \mid \operatorname{ord}_{q}\left(\sigma^{p}-\sigma\right)$. By Lemma 2, $\operatorname{ord}_{q} u^{2} \in\{0, \pm 2\}$, so by (1) we know that $\operatorname{ord}_{q} u^{2}=\operatorname{ord}_{q} v^{2}=-2$ has to hold for $\operatorname{ord}_{q}\left(v^{2}-u^{2}\right) \geq 0$ to occur (for $p \mid \operatorname{ord}_{q}\left(v^{2}-u^{2}\right)$ cannot hold if it is negative). Since $q \neq t$, this now also gives us $\operatorname{ord}_{q} v^{2} t^{p^{s}}=\operatorname{ord}_{q} u^{2} t=-2$
and $\operatorname{ord}_{q}\left(v^{2} t^{p^{s}}-u^{2} t\right)=\operatorname{ord}_{q}\left(\mu^{p}-\mu\right) \geq 0$. Now since $\mu^{p}-\mu-t\left(\sigma^{p}-\sigma\right)=$ $v^{2} t^{p^{s}}-u^{2} t-v^{2} t+u^{2} t=v^{2}\left(t^{p^{s}}-t\right)$ and $\operatorname{ord}_{q}\left(\mu^{p}-\mu-t\left(\sigma^{p}-\sigma\right)\right) \geq 0$, we have $\operatorname{ord}_{q}\left(v^{2}\left(t^{p^{s}}-t\right)\right) \geq 0$, and therefore $\operatorname{ord}_{q}\left(t^{p^{s}}-t\right) \geq 2$. Because $s>0$ we have $\operatorname{ord}_{q}\left(t^{p^{s}}-t\right) \in\{0,1\}$ which gives a contradiction, so there cannot be such primes q, hence $v=w^{p} t^{i}$ for some $w \in \bar{F}(t), i \in \mathbb{Z}$. Write $x=z t^{j}$ with $j \in \mathbb{Z}$ and z, t coprime, so that $u=\frac{z^{p} t^{j p}+t}{z^{p} p^{p j}-t}$. If $j<0$, then $u=\frac{z^{p}+t^{|p j|+1}}{z^{p}-t^{p j| |+1}}$; if $j=0$, then $u=\frac{z^{p}+t}{z^{p}-t}$; if $j>0$, then $u=\frac{z^{p} p^{p j-1}+1}{z^{p} t^{p j-1}-1}$, so in all cases $\operatorname{ord}_{t} u=0$. This means that if $j \neq 0$ then either (1) or (2) gives $p \mid j$, so $p \mid j$ must hold, but now v is a p-th power again which shows that this case cannot occur. Points awarded: 1 for showing why v cannot be a p-th power by using the characteristic $p \neq 2$; 1 for using Lemma 2 to reason why $\operatorname{ord}_{q}\left(v^{2}-u^{2}\right) \geq 0$ has to hold; 1 for demonstrating using $\operatorname{ord}_{q}\left(t^{p^{s}}-t\right)$ why such primes q cannot exist; 1 for providing an argument which shows that v must then be a p-th power giving our final contradiction.

Exercise 2

Prove the Proposition used in the proof of Lemma 4: If $z \in F[t]$ has only simple roots and $t \nmid z$, then $\exists s \in \mathbb{N}_{>0} z \mid t^{p^{s}-1}-1$. (3 pts.)

Suppose $z \in F[t]$ has only simple roots and $t \nmid z$; also suppose z is not a constant in F (for then the result follows immediately since z is now a unit). Because $F[t] / z$ is finite (the finiteness of F is part of the assumptions of Lemma 4) and t is not 0 here since $t \nmid z$, there are $m, n \in \mathbb{N}$ with $m \neq n$ such that $z \mid t^{m}-t^{n}$. Take $m>n$ without loss of generality, so that $z \mid t^{m-n}-1$ because $t \nmid z$. If $m-n=k p, k \in \mathbb{N}_{>0}$, then $z \mid\left(t^{k}-1\right)^{p}$ by characteristic p, but then $z \mid t^{k}-1$ since z has only simple roots, so we may assume $p \nmid m-n$. This means that $m-n, p$ are coprime, so $\exists s \in \mathbb{N}_{>0}(m-n) \mid p^{s}-1$, hence $t^{m-n}-1 \mid t^{p^{s}-1}-1$ and therefore $z \mid t^{p^{s}-1}-1$ as we needed to prove. Points awarded: 1 for reasoning that we have such m, n using $t \nmid z$ and the finiteness of F; 1 for showing how we get to $z \mid t^{k}-1$ where $p \nmid k$ by using that z has only simple roots; 1 for providing an argument how this leads to an s such that $z \mid t^{p^{s}-1}-1$.

