Model solution exercises week 11

(Presentation: Nils Donselaar)

Exercise 1

a) Give a proof of Lemma 2, i.e. prove that if F is a field of characteristic $p \geq 3$, then for all $x \in F(t)$ the expression $u = \frac{x^p + t}{x^p - t}$ has only simple zeroes and poles. (3 pts.)

b) Using Lemma 2, complete the proof of Lemma 3 discussed during the presentation by proving the right-to-left direction for the case where s > 0 and y is not a p-th power of any function $z \in \overline{F}(t)$. (4 pts.)

a) Write $x = \frac{a}{b}$ in its unique way. Now $u = \frac{(\frac{a}{b})^{p}+t}{(\frac{a}{b})^{p}-t} = \frac{a^{p}+tb^{p}}{a^{p}-tb^{p}}$. Let q be a prime of F[t] such that $q^{2} \mid a^{p} + tb^{p}$. Then q divides $\frac{d}{dt}(a^{p} + tb^{p}) = b^{p}$; but then q is a prime such that both $q \mid a^{p} + tb^{p}$ and $q \mid b^{p}$, hence also $q \mid a^{p}$. This would mean that $q \mid a$ and $q \mid b$, but this cannot occur since a, b coprime, so u only has simple zeroes. The case for poles is entirely symmetrical: if $q^{2} \mid a^{p} - tb^{p}$, then q divides $\frac{d}{dt}(a^{p} - tb^{p}) = -b^{p}$, and so $q \mid a^{p}$ by that fact that $q \mid a^{p} - tb^{p}$ is also true. This would again mean that $q \mid a$ and $q \mid b$ are both true, which is impossible, so u also has only simple poles. Points awarded: 1 for rewriting u by taking x as a unique fraction; $1\frac{1}{2}$ for showing how we get a contradiction from assuming that we have a zero/pole of higher multiplicity; $\frac{1}{2}$ for pointing out how the argument can be extended to poles/zeroes.

b) Assume s > 0 and y is not a p-th power of any function $z \in \overline{F}(t)$. If $v = w^p$ for some $w \in \overline{F}(t)$, then $v = \frac{y+t^{p^s}}{y-t^{p^s}} = w^p$. From this we obtain $y + t^{p^s} = w^p(y - t^{p^s})$, which in turn gives $y(1 - w^p) = -t^{p^s}(w^p + 1)$ which because of characteristic p is equal to $y(1 - w)^p = -(t^{p^{s-1}}(w+1))^p$. Since $\operatorname{char}(F) \neq 2$, w = 1 is impossible (for this would lead to $y + t^{p^s} = y - t^{p^s}$), but now $y = (t^{p^{s-1}}\frac{w+1}{w-1})^p$ which contradicts our assumption that y is not a p-th power, hence v is not a p-th power. Suppose $q \neq t$ is a prime in F[t] such that $\operatorname{ord}_q v < 0$, $p \nmid \operatorname{ord}_q v$. Now if $\operatorname{ord}_q(\sigma^p - \sigma) < 0$, then $p \mid \operatorname{ord}_q(\sigma^p - \sigma)$. By Lemma 2, $\operatorname{ord}_q u^2 \in \{0, \pm 2\}$, so by (1) we know that $\operatorname{ord}_q u^2 = \operatorname{ord}_q v^2 = -2$ has to hold for $\operatorname{ord}_q(v^2 - u^2) \ge 0$ to occur (for $p \mid \operatorname{ord}_q(v^2 - u^2)$ cannot hold if it is negative). Since $q \neq t$, this now also gives us $\operatorname{ord}_q v^2 t^{p^s} = \operatorname{ord}_q u^2 t = -2$

and $\operatorname{ord}_q(v^2t^{p^s}-u^2t) = \operatorname{ord}_q(\mu^p-\mu) \geq 0$. Now since $\mu^p - \mu - t(\sigma^p - \sigma) = v^2t^{p^s} - u^2t - v^2t + u^2t = v^2(t^{p^s} - t)$ and $\operatorname{ord}_q(\mu^p - \mu - t(\sigma^p - \sigma)) \geq 0$, we have $\operatorname{ord}_q(v^2(t^{p^s} - t)) \geq 0$, and therefore $\operatorname{ord}_q(t^{p^s} - t) \geq 2$. Because s > 0 we have $\operatorname{ord}_q(t^{p^s} - t) \in \{0, 1\}$ which gives a contradiction, so there cannot be such primes q, hence $v = w^p t^i$ for some $w \in \overline{F}(t), i \in \mathbb{Z}$. Write $x = zt^j$ with $j \in \mathbb{Z}$ and z, t coprime, so that $u = \frac{z^p t^{jp} + t}{z^{ptp^j} - 1}$. If j < 0, then $u = \frac{z^p + t}{z^p - t^{|p||+1}}$; if j = 0, then $u = \frac{z^p + t}{z^p - t}$; if j > 0, then $u = \frac{z^{p+t} |p| + 1}{z^p - t^{|p||+1}}$, so in all cases $\operatorname{ord}_t u = 0$. This means that if $j \neq 0$ then either (1) or (2) gives $p \mid j$, so $p \mid j$ must hold, but now v is a p-th power again which shows that this case cannot occur. Points awarded: 1 for showing why v cannot be a p-th power by using the characteristic $p \neq 2$; 1 for using Lemma 2 to reason why $\operatorname{ord}_q(v^2 - u^2) \geq 0$ has to hold; 1 for demonstrating using $\operatorname{ord}_q(t^{p^s} - t)$ why such primes q cannot exist; 1 for providing an argument which shows that v must then be a p-th power giving our final contradiction.

Exercise 2

Prove the Proposition used in the proof of Lemma 4: If $z \in F[t]$ has only simple roots and $t \nmid z$, then $\exists s \in \mathbb{N}_{>0} \ z \mid t^{p^s-1} - 1$. (3 pts.)

Suppose $z \in F[t]$ has only simple roots and $t \nmid z$; also suppose z is not a constant in F (for then the result follows immediately since z is now a unit). Because F[t]/z is finite (the finiteness of F is part of the assumptions of Lemma 4) and t is not 0 here since $t \nmid z$, there are $m, n \in \mathbb{N}$ with $m \neq n$ such that $z \mid t^m - t^n$. Take m > n without loss of generality, so that $z \mid t^{m-n}-1$ because $t \nmid z$. If $m-n = kp, k \in \mathbb{N}_{>0}$, then $z \mid (t^k-1)^p$ by characteristic p, but then $z \mid t^k - 1$ since z has only simple roots, so we may assume $p \nmid m-n$. This means that m-n, p are coprime, so $\exists s \in \mathbb{N}_{>0} (m-n) \mid p^s - 1$, hence $t^{m-n} - 1 \mid t^{p^{s-1}} - 1$ and therefore $z \mid t^{p^s-1} - 1$ as we needed to prove. Points awarded: 1 for reasoning that we have such m, n using $t \nmid z$ and the finiteness of F; 1 for showing how we get to $z \mid t^k - 1$ where $p \nmid k$ by using that z has only simple roots; 1 for providing an argument how this leads to an s such that $z \mid t^{p^{s-1}} - 1$.