Seminar on Hilbert's Tenth Problem Homework, due December 16 - model solution

1a) We write $\overrightarrow{a} = a_1, \ldots, a_k$, $\overrightarrow{x} = x_1, \ldots, x_n$ and $\overrightarrow{y} = y_1, \ldots, y_m$. Here *m* and *n* are natural numbers. Let *S* and *T* have the Diophantine representations

$$(\overrightarrow{a}) \in S \Leftrightarrow \exists \overrightarrow{x} \in R \ (D_1(\overrightarrow{a}, \overrightarrow{x}) = 0); (\overrightarrow{a}) \in T \Leftrightarrow \exists \overrightarrow{y} \in R \ (D_2(\overrightarrow{a}, \overrightarrow{y}) = 0).$$

Now we can define $S \cup T$ by:

 $(\overrightarrow{a}) \in S \cup T \Leftrightarrow \exists \overrightarrow{x}, \overrightarrow{y} \in R \ (D_1(\overrightarrow{a}, \overrightarrow{x}) \cdot D_2(\overrightarrow{a}, \overrightarrow{y}) = 0).$

We'll show that this definition works. Suppose that $(\overrightarrow{a}) \in S \cup T$. Then $(\overrightarrow{a}) \in S$ or $(\overrightarrow{a}) \in T$. If $(\overrightarrow{a}) \in S$, then there exist $\overrightarrow{x} \in R$ such that $D_1(\overrightarrow{a}, \overrightarrow{x}) = 0$. So there also exist $\overrightarrow{x}, \overrightarrow{y} \in R$ such that $D_1(\overrightarrow{a}, \overrightarrow{x}) \cdot D_2(\overrightarrow{a}, \overrightarrow{y}) = 0$, for example by taking $y_i = 0$ for $1 \leq i \leq m$. The case where $(\overrightarrow{a}) \in T$ is similar.

Now suppose that there exist $\overrightarrow{x}, \overrightarrow{y} \in R$ such that $D_1(\overrightarrow{a}, \overrightarrow{x}) \cdot D_2(\overrightarrow{a}, \overrightarrow{y}) = 0$. Since R is a domain, it has no zero divisors, so $D_1(\overrightarrow{a}, \overrightarrow{x}) = 0$ or $D_2(\overrightarrow{a}, \overrightarrow{y}) = 0$. This means that $(\overrightarrow{a}) \in S$ or $(\overrightarrow{a}) \in T$, so $(\overrightarrow{a}) \in S \cup T$.

1b) Note: since the exercise refers to the fraction field of R, it is implicitly implied that R is again an integral domain. I should have mentioned it in the exercise, but it apparently I failed to do so.

We use the same notation as in the previous exercise. Let $P = \sum_{i=0}^{d} a_i x^i$ be a polynomial that has no roots in the fraction field of R. Here d is a positive integer and $a_d \neq 0$. We can define $S \cap T$ by

$$(\overrightarrow{a}) \in S \cap T \Leftrightarrow \exists \overrightarrow{x}, \overrightarrow{y} \in R \left(\sum_{i=0}^{d} a_i \cdot D_1^{d-i} \left(\overrightarrow{a}, \overrightarrow{x} \right) \cdot D_2^i \left(\overrightarrow{a}, \overrightarrow{y} \right) = 0 \right).$$

Again, we show that this definition is adequate. Suppose $(\overrightarrow{a}) \in S \cap T$, then $(\overrightarrow{a}) \in S$ and $(\overrightarrow{a}) \in T$. So there exist $\overrightarrow{x} \in R$ and $\overrightarrow{y} \in R$ such that $D_1(\overrightarrow{a}, \overrightarrow{x}) = 0$ and $D_2(\overrightarrow{a}, \overrightarrow{y}) = 0$. So the right-hand side of the definition clearly holds.

Now suppose there exist $\overrightarrow{x}, \overrightarrow{y} \in R$ such that the right-hand side holds. Assume that $D_1(\overrightarrow{a}, \overrightarrow{x}) \neq 0$. Then we have

$$0 = \sum_{i=0}^{d} a_i \cdot D_1^{d-i} \left(\overrightarrow{a}, \overrightarrow{x}\right) \cdot D_2^i \left(\overrightarrow{a}, \overrightarrow{y}\right)$$
$$= D_1^d \left(\overrightarrow{a}, \overrightarrow{x}\right) \cdot \sum_{i=0}^{d} a_i \cdot \left(\frac{D_2\left(\overrightarrow{a}, \overrightarrow{y}\right)}{D_1\left(\overrightarrow{a}, \overrightarrow{x}\right)}\right)^i = D_1^d \left(\overrightarrow{a}, \overrightarrow{x}\right) \cdot P\left(\frac{D_2\left(\overrightarrow{a}, \overrightarrow{y}\right)}{D_1\left(\overrightarrow{a}, \overrightarrow{x}\right)}\right).$$

Since $D_1(\overrightarrow{a}, \overrightarrow{x})$ is non-zero, we must have $P\left(\frac{D_2(\overrightarrow{a}, \overrightarrow{y})}{D_1(\overrightarrow{a}, \overrightarrow{x})}\right) = 0$. But then we have found a root of P in the fraction field of R: contradiction. So we must have $D_1(\overrightarrow{a}, \overrightarrow{x}) = 0$. Now we get $a_d \cdot D_2^d(\overrightarrow{a}, \overrightarrow{y}) = 0$. Since $a_d \neq 0$, we get $D_2(\overrightarrow{a}, \overrightarrow{y}) = 0$. Now it follows that $(\overrightarrow{a}) \in S$ and $(\overrightarrow{a}) \in T$, so $(\overrightarrow{a}) \in S \cap T$.

2a) By the binomial theorem and taking even terms and odd terms together, we get

$$X_{a}(Z) + Y_{a}(Z)\sqrt{Z^{2} - 1} = \left(Z + \sqrt{Z^{2} - 1}\right)^{a} = \sum_{i=0}^{a} \binom{a}{i} Z^{a-i} \left(Z^{2} - 1\right)^{\frac{i}{2}}$$
$$= \sum_{i=0}^{\lfloor \frac{a}{2} \rfloor} \binom{a}{2i} Z^{a-2i} \left(Z^{2} - 1\right)^{i} + \sqrt{Z^{2} - 1} \sum_{i=0}^{\lfloor \frac{a-1}{2} \rfloor} \binom{a}{2i+1} Z^{a-2i-1} \left(Z^{2} - 1\right)^{i}$$

So $X_a(Z) = \sum_{i=0}^{\lfloor \frac{a}{2} \rfloor} {a \choose 2i} Z^{a-2i} (Z^2 - 1)^i$. In the *i*-th term, the highest exponent of Z is (a - 2i) + 2i = a and the coefficient of Z^a , that is ${a \choose 2i}$, is positive, so it follows that deg $X_a = a$.

For the second part, we use a similar calculation to get

$$X_{-a}(Z) + Y_{-a}(Z)\sqrt{Z^{2}-1} = \left(Z + \sqrt{Z^{2}-1}\right)^{-a} = \left(Z - \sqrt{Z^{2}-1}\right)^{a}$$
$$= \sum_{i=0}^{\lfloor \frac{a}{2} \rfloor} {a \choose 2i} Z^{a-2i} \left(Z^{2}-1\right)^{i} - \sqrt{Z^{2}-1} \sum_{i=0}^{\lfloor \frac{a-1}{2} \rfloor} {a \choose 2i+1} Z^{a-2i-1} \left(Z^{2}-1\right)^{i}.$$

Now it immediately follows that $X_a = X_{-a}$.

2b) Since $\mathbb{F}_q[Z]$ is of characteristic p, we have

$$\begin{aligned} X_{ap^{b}}(Z) + Y_{ap^{b}}(Z)\sqrt{Z^{2}-1} &= \left(Z+\sqrt{Z^{2}-1}\right)^{ap^{b}} = \left(\left(Z+\sqrt{Z^{2}-1}\right)^{a}\right)^{p^{b}} \\ &= \left(X_{a}(Z)+Y_{a}(Z)\sqrt{Z^{2}-1}\right)^{p^{b}} = X_{a}^{p^{b}}(Z)+Y_{a}^{p^{b}}(Z)\left(Z^{2}-1\right)^{\frac{p^{b}}{2}} \\ &= X_{a}^{p^{b}}(Z) + \left(Y_{a}^{p^{b}}(Z)\left(Z^{2}-1\right)^{\frac{p^{b}-1}{2}}\right) \cdot \sqrt{Z^{2}-1}. \end{aligned}$$

Since p is odd, $\frac{p^b-1}{2}$ is an integer, so it follows that $X_{ap^b} = (X_a)^{p^b}$.

2c) Note that $X_1(Z) = Z$. So we have $X_m(B) = X_{p^k}(B) = (X_1(B))^{p^k} = B^{p^k} = A$ and $X_n(B+1) = X_{p^k}(B+1) = (X_1(B+1))^{p^k} = (B+1)^{p^k} = B^{p^k} + 1^{p^k} = A + 1.$

2d) Suppose *m* is negative. Then we have $X_m = X_{-m}$, so we can replace *m* by the positive number -m. Therefore, we may assume that $m \in \mathbb{N}$. The same holds for *n*. Now we have $X_n(B+1) = A + 1 = X_m(B) + 1$. Since $m, n \in \mathbb{N}$, we know that deg $X_m = m$ and deg $X_n = n$. Putting $d = \deg B$, comparing degrees gives: dn = dm. Since *B* is non-constant, we have d > 0, so it follows that m = n. Now we get $X_n(B+1) = X_n(B) + 1$. \Box

2e) We have

$$(X_c(B+1))^{p^k} = X_{cp^k}(B+1) = X_n(B+1) = X_n(B) + 1 = X_{cp^k}(B) + 1$$
$$= (X_c(B))^{p^k} + 1^{p^k} = (X_c(B) + 1)^{p^k}.$$

Since $\mathbb{F}_q[Z]$ is an integral domain of characteristic p, the map $x \mapsto x^p$ is injective. So its k-th iteration, i.e. the map $x \mapsto x^{p^k}$, must also be injective. Hence it follows that $X_c(B+1) = X_c(B) + 1$.

2f) We write $X_c(Z) = \alpha Z^c + \beta Z^{c-1} + \ldots$ with $\alpha, \beta \in \mathbb{F}_q$. Here the dots are the terms of smaller degree in Z. We know that deg $X_c = c$, so α must be non-zero. We will now expand the expressions $X_c(B+1)$ and $X_c(B)+1$. In what follows, dots are terms of smaller degree in B (that is, smaller than c-1).

We have
$$\alpha (B+1)^c = \alpha B^c + \alpha c B^{c-1} + ...$$
 and $\beta (B+1)^{c-1} = \beta B^{c-1} + ...$, so

$$X_c(B+1) = \alpha B^c + (\alpha c + \beta)B^{c-1} + \dots$$
(1)

Since $c \ge 2$, we have c - 1 > 0, so the degree of 1 as an exponent of B is smaller than c - 1. We get

$$X_c(B) + 1 = \alpha B^c + \beta B^{c-1} + \dots$$
(2)

Expanding the terms on the dots will give us an expression with degree in Z at most (c-2)d. Since d > 0, we have (c-1)d > (c-2)d. So the coefficients of $Z^{(c-1)d}$ in (1) and (2) can only be equal if $\alpha c + \beta = \beta$. So we must have $\alpha c = 0$ and since α was non-zero, we get c = 0 in \mathbb{F}_q . But this means that $p \mid c$: contradiction!

Since $p \nmid c$, it follows that c = 1. Now we get $m = n = p^k$, so $A = X_m(B) = X_{p^k}(B) = B^{p^k}$. This completes the proof of the other direction.

3) We write $Z^n - 1 = \prod_{k=0}^{n-1} (X - \zeta_n^k)$, where ζ_n is an *n*-th primitive root of unity. Consider a *k* with $0 \le k < n$. We define $c = \gcd(k, n)$ and $d = \frac{n}{c}$. It is well-known that ζ_n^c is a primitive *d*-th root of unity. Since $c \mid k$, we can write k = ac for some integer *a*. Then $\zeta_n^k = \zeta_n^{ac} = (\zeta_n^c)^a$, so ζ_n^k is also a *d*-th root of unity. Moreover, since $c = \gcd(k, m)$, we have $\operatorname{gcd}\left(\frac{k}{c},\frac{n}{c}\right) = 1$, that is: $\operatorname{gcd}(a,d) = 1$. So ζ_n^k is even a primitive *d*-th root of unity. Now it follows that $X - \zeta_n^k \mid \Phi_d(Z)$. Since *d* clearly divides *n*, we get $X - \zeta_n^k \mid \prod_{d \mid n} \Phi_d(Z)$.

Since all the factors $X - \zeta_n^k$, with $0 \le k < n$ are pairwise coprime, we obtain

$$\prod_{k=0}^{n-1} \left(X - \zeta_n^k \right) \mid \prod_{d|n} \Phi_d(Z),$$

that is:

$$Z^n - 1 \mid \prod_{d \mid n} \Phi_d(Z).$$

By the well-known identity $n = \sum_{d|n} \phi(d)$, the degrees of both polynomials are equal. Moreover, both polynomials are clearly monic, so the equality follows.

Marking scheme

1a) 2 pt: 1 pt for the right definition, 1 pt for proving that it works.

1b) 3 pt: 2 pt for the right definition, 1 pt for proving that it works.

2a) 2 pt: 1 pt for each result.

2b) 1 pt.

2c) 1 pt.

2d) 1 pt.

2e) 2 pt.

2f) 3 pt: 2 pt for obtaining the contradiction, 1 pt. for completing the proof.

3) 5 pt: 1 pt. for introducing a primitive *n*-th root of unity, 2 pt. for proving that $X - \zeta_n^k \mid \prod_{d|n} \Phi_d(Z)$, 2 pt for completing the proof. Of course, there are different ways of solving this exercise.

Grade = (number of points)/2.