
Seminar on Hilbert’s Tenth Problem
Homework, due December 16 - model solution

1a) We write −→a = a1, . . . , ak, −→x = x1, . . . , xn and −→y = y1, . . . , ym. Here m and n are
natural numbers. Let S and T have the Diophantine representations

(−→a ) ∈ S ⇔ ∃−→x ∈ R (D1 (−→a ,−→x ) = 0) ;

(−→a ) ∈ T ⇔ ∃−→y ∈ R (D2 (−→a ,−→y ) = 0) .

Now we can define S ∪ T by:

(−→a ) ∈ S ∪ T ⇔ ∃−→x ,−→y ∈ R (D1 (−→a ,−→x ) ·D2 (−→a ,−→y ) = 0) .

We’ll show that this definition works. Suppose that (−→a ) ∈ S ∪ T . Then (−→a ) ∈ S or
(−→a ) ∈ T . If (−→a ) ∈ S, then there exist −→x ∈ R such that D1 (−→a ,−→x ) = 0. So there also
exist −→x ,−→y ∈ R such that D1 (−→a ,−→x ) · D2 (−→a ,−→y ) = 0, for example by taking yi = 0 for
1 ≤ i ≤ m. The case where (−→a ) ∈ T is similar.

Now suppose that there exist −→x ,−→y ∈ R such that D1 (−→a ,−→x ) ·D2 (−→a ,−→y ) = 0. Since R is
a domain, it has no zero divisors, so D1 (−→a ,−→x ) = 0 or D2 (−→a ,−→y ) = 0. This means that
(−→a ) ∈ S or (−→a ) ∈ T , so (−→a ) ∈ S ∪ T . �

1b) Note: since the exercise refers to the fraction field of R, it is implicitly implied that R
is again an integral domain. I should have mentioned it in the exercise, but it apparently
I failed to do so.

We use the same notation as in the previous exercise. Let P =
∑d

i=0 aix
i be a polynomial

that has no roots in the fraction field of R. Here d is a positive integer and ad 6= 0. We
can define S ∩ T by

(−→a ) ∈ S ∩ T ⇔ ∃−→x ,−→y ∈ R

(
d∑

i=0

ai ·Dd−i
1 (−→a ,−→x ) ·Di

2 (−→a ,−→y ) = 0

)
.

Again, we show that this definition is adequate. Suppose (−→a ) ∈ S ∩ T , then (−→a ) ∈ S and
(−→a ) ∈ T . So there exist −→x ∈ R and −→y ∈ R such that D1 (−→a ,−→x ) = 0 and D2 (−→a ,−→y ) = 0.
So the right-hand side of the definition clearly holds.

Now suppose there exist −→x ,−→y ∈ R such that the right-hand side holds. Assume that
D1 (−→a ,−→x ) 6= 0. Then we have

0 =
d∑

i=0

ai ·Dd−i
1 (−→a ,−→x ) ·Di

2 (−→a ,−→y )

= Dd
1 (−→a ,−→x ) ·

d∑
i=0

ai ·
(
D2 (−→a ,−→y )

D1 (−→a ,−→x )

)i

= Dd
1 (−→a ,−→x ) · P

(
D2 (−→a ,−→y )

D1 (−→a ,−→x )

)
.
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Since D1 (−→a ,−→x ) is non-zero, we must have P

(
D2(−→a ,−→y )
D1(−→a ,−→x )

)
= 0. But then we have found

a root of P in the fraction field of R: contradiction. So we must have D1 (−→a ,−→x ) = 0.
Now we get ad ·Dd

2 (−→a ,−→y ) = 0. Since ad 6= 0, we get D2 (−→a ,−→y ) = 0. Now it follows that
(−→a ) ∈ S and (−→a ) ∈ T , so (−→a ) ∈ S ∩ T . �

2a) By the binomial theorem and taking even terms and odd terms together, we get

Xa(Z) + Ya(Z)
√
Z2 − 1 =

(
Z +
√
Z2 − 1

)a
=

a∑
i=0

(
a

i

)
Za−i (Z2 − 1

) i
2

=

ba
2
c∑

i=0

(
a

2i

)
Za−2i (Z2 − 1

)i
+
√
Z2 − 1

ba−1
2
c∑

i=0

(
a

2i+ 1

)
Za−2i−1 (Z2 − 1

)i
.

So Xa(Z) =
∑ba

2
c

i=0

(
a
2i

)
Za−2i (Z2 − 1)

i
. In the i-th term, the highest exponent of Z is

(a − 2i) + 2i = a and the coefficient of Za, that is
(
a
2i

)
, is positive, so it follows that

degXa = a.

For the second part, we use a similar calculation to get

X−a(Z) + Y−a(Z)
√
Z2 − 1 =

(
Z +
√
Z2 − 1

)−a
=
(
Z −
√
Z2 − 1

)a
=

ba
2
c∑

i=0

(
a

2i

)
Za−2i (Z2 − 1

)i −√Z2 − 1

ba−1
2
c∑

i=0

(
a

2i+ 1

)
Za−2i−1 (Z2 − 1

)i
.

Now it immediately follows that Xa = X−a. �

2b) Since Fq[Z] is of characteristic p, we have

Xapb(Z) + Yapb(Z)
√
Z2 − 1 =

(
Z +
√
Z2 − 1

)apb
=
((
Z +
√
Z2 − 1

)a)pb
=
(
Xa(Z) + Ya(Z)

√
Z2 − 1

)pb
= Xpb

a (Z) + Y pb

a (Z)
(
Z2 − 1

) pb

2

= Xpb

a (Z) +

(
Y pb

a (Z)
(
Z2 − 1

) pb−1
2

)
·
√
Z2 − 1.

Since p is odd, pb−1
2

is an integer, so it follows that Xapb = (Xa)
pb . �

2c) Note that X1(Z) = Z. So we have Xm(B) = Xpk(B) = (X1(B))p
k

= Bpk = A and

Xn(B + 1) = Xpk(B + 1) = (X1(B + 1))p
k

= (B + 1)p
k

= Bpk + 1pk = A+ 1. �
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2d) Suppose m is negative. Then we have Xm = X−m, so we can replace m by the positive
number −m. Therefore, we may assume that m ∈ N. The same holds for n. Now we
have Xn(B + 1) = A + 1 = Xm(B) + 1. Since m,n ∈ N, we know that degXm = m and
degXn = n. Putting d = degB, comparing degrees gives: dn = dm. Since B is non-
constant, we have d > 0, so it follows that m = n. Now we get Xn(B+ 1) = Xn(B) + 1. �

2e) We have

(Xc(B + 1))p
k

= Xcpk(B + 1) = Xn(B + 1) = Xn(B) + 1 = Xcpk(B) + 1

= (Xc(B))p
k

+ 1pk = (Xc(B) + 1)p
k

.

Since Fq[Z] is an integral domain of characteristic p, the map x 7→ xp is injective. So

its k-th iteration, i.e. the map x 7→ xp
k
, must also be injective. Hence it follows that

Xc(B + 1) = Xc(B) + 1. �

2f) We write Xc(Z) = αZc + βZc−1 + . . . with α, β ∈ Fq. Here the dots are the terms
of smaller degree in Z. We know that degXc = c, so α must be non-zero. We will now
expand the expressions Xc(B+1) and Xc(B)+1. In what follows, dots are terms of smaller
degree in B (that is, smaller than c− 1).

We have α(B + 1)c = αBc + αcBc−1 + . . . and β(B + 1)c−1 = βBc−1 + . . ., so

Xc(B + 1) = αBc + (αc+ β)Bc−1 + . . . (1)

Since c ≥ 2, we have c − 1 > 0, so the degree of 1 as an exponent of B is smaller than
c− 1. We get

Xc(B) + 1 = αBc + βBc−1 + . . . (2)

Expanding the terms on the dots will give us an expression with degree in Z at most
(c− 2)d. Since d > 0, we have (c− 1)d > (c− 2)d. So the coefficients of Z(c−1)d in (1) and
(2) can only be equal if αc + β = β. So we must have αc = 0 and since α was non-zero,
we get c = 0 in Fq. But this means that p | c: contradiction!

Since p - c, it follows that c = 1. Now we get m = n = pk, so A = Xm(B) = Xpk(B) = Bpk .
This completes the proof of the other direction. �

3) We write Zn−1 =
∏n−1

k=0

(
X − ζkn

)
, where ζn is an n-th primitive root of unity. Consider

a k with 0 ≤ k < n. We define c = gcd(k, n) and d = n
c
. It is well-known that ζcn is a

primitive d-th root of unity. Since c | k, we can write k = ac for some integer a. Then
ζkn = ζacn = (ζcn)a, so ζkn is also a d-th root of unity. Moreover, since c = gcd(k,m), we have
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gcd
(
k
c
, n
c

)
= 1, that is: gcd(a, d) = 1. So ζkn is even a primitive d-th root of unity. Now it

follows that X − ζkn | Φd(Z). Since d clearly divides n, we get X − ζkn |
∏

d|n Φd(Z).

Since all the factors X − ζkn, with 0 ≤ k < n are pairwise coprime, we obtain

n−1∏
k=0

(
X − ζkn

)
|
∏
d|n

Φd(Z),

that is:
Zn − 1 |

∏
d|n

Φd(Z).

By the well-known identity n =
∑

d|n φ(d), the degrees of both polynomials are equal.
Moreover, both polynomials are clearly monic, so the equality follows. �

Marking scheme

1a) 2 pt: 1 pt for the right definition, 1 pt for proving that it works.
1b) 3 pt: 2 pt for the right definition, 1 pt for proving that it works.
2a) 2 pt: 1 pt for each result.
2b) 1 pt.
2c) 1 pt.
2d) 1 pt.
2e) 2 pt.
2f) 3 pt: 2 pt for obtaining the contradiction, 1 pt. for completing the proof.
3) 5 pt: 1 pt. for introducing a primitive n-th root of unity, 2 pt. for proving that
X − ζkn |

∏
d|n Φd(Z), 2 pt for completing the proof. Of course, there are different ways of

solving this exercise.

Grade = (number of points)/2.
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