Seminar on Hilbert's Tenth Problem Homework, due December 16-model solution

1a) We write $\vec{a}=a_{1}, \ldots, a_{k}, \vec{x}=x_{1}, \ldots, x_{n}$ and $\vec{y}=y_{1}, \ldots, y_{m}$. Here m and n are natural numbers. Let S and T have the Diophantine representations

$$
\begin{aligned}
& (\vec{a}) \in S \Leftrightarrow \exists \vec{x} \in R\left(D_{1}(\vec{a}, \vec{x})=0\right) ; \\
& (\vec{a}) \in T \Leftrightarrow \exists \vec{y} \in R\left(D_{2}(\vec{a}, \vec{y})=0\right) .
\end{aligned}
$$

Now we can define $S \cup T$ by:

$$
(\vec{a}) \in S \cup T \Leftrightarrow \exists \vec{x}, \vec{y} \in R\left(D_{1}(\vec{a}, \vec{x}) \cdot D_{2}(\vec{a}, \vec{y})=0\right) .
$$

We'll show that this definition works. Suppose that $(\vec{a}) \in S \cup T$. Then $(\vec{a}) \in S$ or $(\vec{a}) \in T$. If $(\vec{a}) \in S$, then there exist $\vec{x} \in R$ such that $D_{1}(\vec{a}, \vec{x})=0$. So there also exist $\vec{x}, \vec{y} \in R$ such that $D_{1}(\vec{a}, \vec{x}) \cdot D_{2}(\vec{a}, \vec{y})=0$, for example by taking $y_{i}=0$ for $1 \leq i \leq m$. The case where $(\vec{a}) \in T$ is similar.

Now suppose that there exist $\vec{x}, \vec{y} \in R$ such that $D_{1}(\vec{a}, \vec{x}) \cdot D_{2}(\vec{a}, \vec{y})=0$. Since R is a domain, it has no zero divisors, so $D_{1}(\vec{a}, \vec{x})=0$ or $D_{2}(\vec{a}, \vec{y})=0$. This means that $(\vec{a}) \in S$ or $(\vec{a}) \in T$, so $(\vec{a}) \in S \cup T$.

1b) Note: since the exercise refers to the fraction field of R, it is implicitly implied that R is again an integral domain. I should have mentioned it in the exercise, but it apparently I failed to do so.

We use the same notation as in the previous exercise. Let $P=\sum_{i=0}^{d} a_{i} x^{i}$ be a polynomial that has no roots in the fraction field of R. Here d is a positive integer and $a_{d} \neq 0$. We can define $S \cap T$ by

$$
(\vec{a}) \in S \cap T \Leftrightarrow \exists \vec{x}, \vec{y} \in R\left(\sum_{i=0}^{d} a_{i} \cdot D_{1}^{d-i}(\vec{a}, \vec{x}) \cdot D_{2}^{i}(\vec{a}, \vec{y})=0\right)
$$

Again, we show that this definition is adequate. Suppose $(\vec{a}) \in S \cap T$, then $(\vec{a}) \in S$ and $(\vec{a}) \in T$. So there exist $\vec{x} \in R$ and $\vec{y} \in R$ such that $D_{1}(\vec{a}, \vec{x})=0$ and $D_{2}(\vec{a}, \vec{y})=0$. So the right-hand side of the definition clearly holds.

Now suppose there exist $\vec{x}, \vec{y} \in R$ such that the right-hand side holds. Assume that $D_{1}(\vec{a}, \vec{x}) \neq 0$. Then we have

$$
\begin{aligned}
0 & =\sum_{i=0}^{d} a_{i} \cdot D_{1}^{d-i}(\vec{a}, \vec{x}) \cdot D_{2}^{i}(\vec{a}, \vec{y}) \\
& =D_{1}^{d}(\vec{a}, \vec{x}) \cdot \sum_{i=0}^{d} a_{i} \cdot\left(\frac{D_{2}(\vec{a}, \vec{y})}{D_{1}(\vec{a}, \vec{x})}\right)^{i}=D_{1}^{d}(\vec{a}, \vec{x}) \cdot P\left(\frac{D_{2}(\vec{a}, \vec{y})}{D_{1}(\vec{a}, \vec{x})}\right) .
\end{aligned}
$$

Since $D_{1}(\vec{a}, \vec{x})$ is non-zero, we must have $P\left(\frac{D_{2}(\vec{a}, \vec{y})}{D_{1}(\vec{a}, \vec{x})}\right)=0$. But then we have found a root of P in the fraction field of R : contradiction. So we must have $D_{1}(\vec{a}, \vec{x})=0$. Now we get $a_{d} \cdot D_{2}^{d}(\vec{a}, \vec{y})=0$. Since $a_{d} \neq 0$, we get $D_{2}(\vec{a}, \vec{y})=0$. Now it follows that $(\vec{a}) \in S$ and $(\vec{a}) \in T$, so $(\vec{a}) \in S \cap T$.

2a) By the binomial theorem and taking even terms and odd terms together, we get

$$
\begin{aligned}
& X_{a}(Z)+Y_{a}(Z) \sqrt{Z^{2}-1}=\left(Z+\sqrt{Z^{2}-1}\right)^{a}=\sum_{i=0}^{a}\binom{a}{i} Z^{a-i}\left(Z^{2}-1\right)^{\frac{i}{2}} \\
& =\sum_{i=0}^{\left\lfloor\frac{a}{2}\right\rfloor}\binom{a}{2 i} Z^{a-2 i}\left(Z^{2}-1\right)^{i}+\sqrt{Z^{2}-1} \sum_{i=0}^{\left\lfloor\frac{a-1}{2}\right\rfloor}\binom{a}{2 i+1} Z^{a-2 i-1}\left(Z^{2}-1\right)^{i}
\end{aligned}
$$

So $X_{a}(Z)=\sum_{i=0}^{\left\lfloor\frac{a}{2}\right\rfloor}\binom{a}{2 i} Z^{a-2 i}\left(Z^{2}-1\right)^{i}$. In the i-th term, the highest exponent of Z is $(a-2 i)+2 i=a$ and the coefficient of Z^{a}, that is $\binom{a}{2 i}$, is positive, so it follows that $\operatorname{deg} X_{a}=a$.

For the second part, we use a similar calculation to get

$$
\begin{aligned}
& X_{-a}(Z)+Y_{-a}(Z) \sqrt{Z^{2}-1}=\left(Z+\sqrt{Z^{2}-1}\right)^{-a}=\left(Z-\sqrt{Z^{2}-1}\right)^{a} \\
& =\sum_{i=0}^{\left\lfloor\frac{a}{2}\right\rfloor}\binom{a}{2 i} Z^{a-2 i}\left(Z^{2}-1\right)^{i}-\sqrt{Z^{2}-1} \sum_{i=0}^{\left\lfloor\frac{a-1}{2}\right\rfloor}\binom{a}{2 i+1} Z^{a-2 i-1}\left(Z^{2}-1\right)^{i} .
\end{aligned}
$$

Now it immediately follows that $X_{a}=X_{-a}$.

2b) Since $\mathbb{F}_{q}[Z]$ is of characteristic p, we have

$$
\begin{aligned}
X_{a p^{b}}(Z)+Y_{a p^{b}}(Z) \sqrt{Z^{2}-1} & =\left(Z+\sqrt{Z^{2}-1}\right)^{a p^{b}}=\left(\left(Z+\sqrt{Z^{2}-1}\right)^{a}\right)^{p^{b}} \\
& =\left(X_{a}(Z)+Y_{a}(Z) \sqrt{Z^{2}-1}\right)^{p^{b}}=X_{a}^{p^{b}}(Z)+Y_{a}^{p^{b}}(Z)\left(Z^{2}-1\right)^{\frac{p^{b}}{2}} \\
& =X_{a}^{p^{b}}(Z)+\left(Y_{a}^{p^{b}}(Z)\left(Z^{2}-1\right)^{\frac{p^{b}-1}{2}}\right) \cdot \sqrt{Z^{2}-1}
\end{aligned}
$$

Since p is odd, $\frac{p^{b}-1}{2}$ is an integer, so it follows that $X_{a p^{b}}=\left(X_{a}\right)^{p^{b}}$.

2c) Note that $X_{1}(Z)=Z$. So we have $X_{m}(B)=X_{p^{k}}(B)=\left(X_{1}(B)\right)^{p^{k}}=B^{p^{k}}=A$ and $X_{n}(B+1)=X_{p^{k}}(B+1)=\left(X_{1}(B+1)\right)^{p^{k}}=(B+1)^{p^{k}}=B^{p^{k}}+1^{p^{k}}=A+1$.

2d) Suppose m is negative. Then we have $X_{m}=X_{-m}$, so we can replace m by the positive number $-m$. Therefore, we may assume that $m \in \mathbb{N}$. The same holds for n. Now we have $X_{n}(B+1)=A+1=X_{m}(B)+1$. Since $m, n \in \mathbb{N}$, we know that $\operatorname{deg} X_{m}=m$ and $\operatorname{deg} X_{n}=n$. Putting $d=\operatorname{deg} B$, comparing degrees gives: $d n=d m$. Since B is nonconstant, we have $d>0$, so it follows that $m=n$. Now we get $X_{n}(B+1)=X_{n}(B)+1$.

2e) We have

$$
\begin{aligned}
\left(X_{c}(B+1)\right)^{p^{k}} & =X_{c p^{k}}(B+1)=X_{n}(B+1)=X_{n}(B)+1=X_{c p^{k}}(B)+1 \\
& =\left(X_{c}(B)\right)^{p^{k}}+1^{p^{k}}=\left(X_{c}(B)+1\right)^{p^{k}}
\end{aligned}
$$

Since $\mathbb{F}_{q}[Z]$ is an integral domain of characteristic p, the map $x \mapsto x^{p}$ is injective. So its k-th iteration, i.e. the map $x \mapsto x^{p^{k}}$, must also be injective. Hence it follows that $X_{c}(B+1)=X_{c}(B)+1$.

2f) We write $X_{c}(Z)=\alpha Z^{c}+\beta Z^{c-1}+\ldots$ with $\alpha, \beta \in \mathbb{F}_{q}$. Here the dots are the terms of smaller degree in Z. We know that $\operatorname{deg} X_{c}=c$, so α must be non-zero. We will now expand the expressions $X_{c}(B+1)$ and $X_{c}(B)+1$. In what follows, dots are terms of smaller degree in B (that is, smaller than $c-1$).

We have $\alpha(B+1)^{c}=\alpha B^{c}+\alpha c B^{c-1}+\ldots$ and $\beta(B+1)^{c-1}=\beta B^{c-1}+\ldots$, so

$$
\begin{equation*}
X_{c}(B+1)=\alpha B^{c}+(\alpha c+\beta) B^{c-1}+\ldots \tag{1}
\end{equation*}
$$

Since $c \geq 2$, we have $c-1>0$, so the degree of 1 as an exponent of B is smaller than $c-1$. We get

$$
\begin{equation*}
X_{c}(B)+1=\alpha B^{c}+\beta B^{c-1}+\ldots \tag{2}
\end{equation*}
$$

Expanding the terms on the dots will give us an expression with degree in Z at most $(c-2) d$. Since $d>0$, we have $(c-1) d>(c-2) d$. So the coefficients of $Z^{(c-1) d}$ in (1) and (2) can only be equal if $\alpha c+\beta=\beta$. So we must have $\alpha c=0$ and since α was non-zero, we get $c=0$ in \mathbb{F}_{q}. But this means that $p \mid c$: contradiction!

Since $p \nmid c$, it follows that $c=1$. Now we get $m=n=p^{k}$, so $A=X_{m}(B)=X_{p^{k}}(B)=B^{p^{k}}$. This completes the proof of the other direction.
3) We write $Z^{n}-1=\prod_{k=0}^{n-1}\left(X-\zeta_{n}^{k}\right)$, where ζ_{n} is an n-th primitive root of unity. Consider a k with $0 \leq k<n$. We define $c=\operatorname{gcd}(k, n)$ and $d=\frac{n}{c}$. It is well-known that ζ_{n}^{c} is a primitive d-th root of unity. Since $c \mid k$, we can write $k=a c$ for some integer a. Then $\zeta_{n}^{k}=\zeta_{n}^{a c}=\left(\zeta_{n}^{c}\right)^{a}$, so ζ_{n}^{k} is also a d-th root of unity. Moreover, since $c=\operatorname{gcd}(k, m)$, we have
$\operatorname{gcd}\left(\frac{k}{c}, \frac{n}{c}\right)=1$, that is: $\operatorname{gcd}(a, d)=1$. So ζ_{n}^{k} is even a primitive d-th root of unity. Now it follows that $X-\zeta_{n}^{k} \mid \Phi_{d}(Z)$. Since d clearly divides n, we get $X-\zeta_{n}^{k} \mid \prod_{d \mid n} \Phi_{d}(Z)$.

Since all the factors $X-\zeta_{n}^{k}$, with $0 \leq k<n$ are pairwise coprime, we obtain

$$
\prod_{k=0}^{n-1}\left(X-\zeta_{n}^{k}\right) \mid \prod_{d \mid n} \Phi_{d}(Z)
$$

that is:

$$
Z^{n}-1 \mid \prod_{d \mid n} \Phi_{d}(Z)
$$

By the well-known identity $n=\sum_{d \mid n} \phi(d)$, the degrees of both polynomials are equal. Moreover, both polynomials are clearly monic, so the equality follows.

Marking scheme

1a) $2 \mathrm{pt}: 1 \mathrm{pt}$ for the right definition, 1 pt for proving that it works.
1b) $3 \mathrm{pt}: 2 \mathrm{pt}$ for the right definition, 1 pt for proving that it works.
2a) $2 \mathrm{pt}: 1 \mathrm{pt}$ for each result.
2b) 1 pt .
2c) 1 pt .
2d) 1 pt .
2e) 2 pt .
2f) $3 \mathrm{pt}: 2 \mathrm{pt}$ for obtaining the contradiction, 1 pt . for completing the proof.
3) $5 \mathrm{pt}: 1 \mathrm{pt}$. for introducing a primitive n-th root of unity, 2 pt . for proving that $X-\zeta_{n}^{k} \mid \prod_{d \mid n} \Phi_{d}(Z), 2$ pt for completing the proof. Of course, there are different ways of solving this exercise.

Grade $=($ number of points $) / 2$.

