Seminar Hilbert 10 - Homework 13

Eric Faber

Due January 6

In these exercises, p is a prime and q a power of p.
Exercise 1 Prove that for all n, m :

$$
\mathbb{F}_{q^{n}} \cap \mathbb{F}_{q^{m}}=\mathbb{F}_{q^{\operatorname{gcd}(n, m)}}
$$

Solution. We first prove that $\mathbb{F}_{q^{s}} \subseteq \mathbb{F}_{q^{n}}$ if and only if $s \mid n$. We have seen that $s \mid n$ if and only if $q^{s}-1 \mid q^{n}-1$.

If $\mathbb{F}_{q^{s}} \subseteq \mathbb{F}_{q^{n}}$, then $\left(\mathbb{F}_{q^{s}}\right)^{*}<\left(\mathbb{F}_{q^{n}}\right)^{*}$ so $q^{s}-1 \mid q^{n}-1$, hence $s \mid n$.
If $s \mid n$, then for all $\alpha \in \mathbb{F}_{q^{s}}$ nonzero, $\alpha^{q^{n}-1}-1=\alpha^{q^{s}-1}-1=0$. So $\alpha \in \mathbb{F}_{q^{n}}$.
It is now easy to see that $\mathbb{F}_{q^{n}} \cap \mathbb{F}_{q^{m}}=\mathbb{F}_{q^{s}}$ where s is the largest such that $\mathbb{F}_{q^{s}} \subseteq \mathbb{F}_{q^{n}}$ and $\mathbb{F}_{q^{s}} \subseteq \mathbb{F}_{q^{m}}$. Therefore $s=\operatorname{gcd}(n, m)$.

Exercise 2 Recall that we used the following Diophantine predicate to bound degrees and quantify over $\mathbb{F}_{q}[Z]$ only:

$$
\beta(X, e) \Longleftrightarrow X=0 \vee\left(X \mid Z^{q^{2 e}}-Z^{q^{e}}\right)
$$

which is equivalent to

$$
\beta(X, e) \Longleftrightarrow X^{2} \mid\left(Z^{q^{2 e}}-Z^{q^{e}}\right) X
$$

We want to prove that for every $X \in \mathbb{F}_{q}[Z]$, there is e such that $\beta(X, e)$.
Define the radical of X to be the biggest square-free divisor of X.
(a) Show that for $X \neq 0$, and Y the radical of X, there exists $c \in \mathbb{N}$ such that

$$
X \mid Y^{c}
$$

(b) Let $\mathbb{F}_{q^{d}}$ be the splitting field of Y, for some d. Show that $Y \mid Z^{q^{e}}-Z$ for all e such that $d \mid e$.
(c) Show that there exists e such that $X \mid Z^{q^{2 e}}-Z^{q^{e}}$.

Solution. (a) We split X in its roots:

$$
X=\chi \prod_{i=1}^{n}\left(X-\alpha_{i}\right)^{r_{i}}
$$

where the α_{i} are all distinct, the $r_{i} \geq 1$ natural numbers and $\chi \in \mathbb{F}_{q}$ is some scalar. Now $Y=\prod_{i=1}^{n}\left(X-\alpha_{i}\right)$ is the radical of X, and clearly

$$
X \mid Y^{c}
$$

for $c=\max \left\{r_{1}, \ldots, r_{n}\right\}$.
(b) Let $\mathbb{F}_{q^{d}}$ be a field containing all roots of Y. Every element of $\mathbb{F}_{q^{d}}$ is a root of $Z^{q^{d}}-Z$, so since Y is square-free:

$$
Y=\prod_{i=1}^{n}\left(Z-\alpha_{i}\right) \mid Z^{q^{d}}-Z
$$

We had already seen that $d \mid e$ if and only if $Z^{q^{d}}-Z \mid Z^{q^{e}}-Z$, which shows that for all such e

$$
Y \mid Z^{q^{e}}-Z
$$

over $\mathbb{F}_{q^{d}}[Z]$.
(c) Let e be such that $d \mid e$ and $q^{e} \geq c$. Then:

$$
X\left|Y^{c}\right| Y^{q^{e}} \mid\left(Z^{q^{e}}-Z\right)^{q^{e}}=Z^{2 q^{e}}-Z^{q^{e}}
$$

It follows that $X \mid Z^{2 q^{e}}-Z^{q^{e}}$ over $\mathbb{F}_{q}[Z]$.

Exercise 3 In this exercise, we will prove that the irreducible factors of Φ_{a} in $\mathbb{F}_{q}[Z]$ have degree $\operatorname{ord}(q \bmod a)$, where $\operatorname{ord}(q \bmod a)$ is the order of q in $(\mathbb{Z} / a \mathbb{Z})^{*}$. We assume that a is prime to p, so that in fact $q \in(\mathbb{Z} / a \mathbb{Z})^{*}$. Recall that

$$
\Phi_{a}(Z)=\prod_{k \in(\mathbb{Z} / a \mathbb{Z})^{*}}\left(Z-\zeta_{a}^{k}\right)
$$

where ζ_{a} is a primitive a-th root of unity, i.e. a generator of the group of a-th roots of unity under multiplication.

We know that $\Phi_{a}(Z)$ has integer coefficients, so we can view it as an element of $\mathbb{F}_{q}[Z]$.
(a) Show that $\zeta_{a} \in \mathbb{F}_{q^{k}}$ if and only if $q^{k} \equiv 1(\bmod a)$.
(b) Conclude that for $\Psi_{a}(Z)$ an irreducible factor of $\Phi_{a}(Z)$ in $\mathbb{F}_{q}[Z]$,

$$
\mathbb{F}_{q}[Z] /\left(\Psi_{a}(Z)\right) \cong \mathbb{F}_{q^{\operatorname{ord}(q \bmod a)}}
$$

and that therefore $\operatorname{deg} \Psi_{a}(Z)=\operatorname{ord}(q \bmod a)$.
Solution. (a) Since ζ_{a} is a primitive a-th root of unity, $\zeta_{a}^{r}=1$ if and only if $a \mid r$. Hence $\zeta_{a} \in \mathbb{F}_{q^{k}}$ if and only if $a \mid q^{k}-1$, which holds if and only if $q^{k} \equiv 1(\bmod a)$.
(b) We know that $\mathbb{F}_{q}[Z] /\left(\Psi_{a}(Z)\right)$ is a vector space over \mathbb{F}_{q} of dimension $\operatorname{deg} \Psi_{a}(Z)$, hence

$$
\mathbb{F}_{q}[Z] /\left(\Psi_{a}(Z)\right) \cong \mathbb{F}_{q^{\operatorname{deg}} \Psi_{a}(Z)}
$$

On the other hand, $\zeta_{a} \in \mathbb{F}_{q}[Z] /\left(\Psi_{a}(Z)\right)$ since $\Psi_{a}(Z)$ has only primitive roots as zeros. It follows from (a) that $q^{\operatorname{deg} \Psi_{a}(Z)} \equiv 1(\bmod a)$. Since $\Psi_{a}(Z)$ splits in any field $\mathbb{F}_{q^{k}}$ for which $\zeta_{a} \in \mathbb{F}_{q^{k}}$, the splitting field $\mathbb{F}_{q}[Z] /\left(\Psi_{a}(Z)\right)$ is the smallest such that $\zeta_{a} \in \mathbb{F}_{q}[Z] /\left(\Psi_{a}(Z)\right)$, so $\operatorname{deg} \Psi_{a}(Z)=k$ where k is the smallest (nonzero) such that $q^{k} \equiv 1(\bmod a)$, hence $\operatorname{deg} \Psi_{a}(Z)=\operatorname{ord}(q \bmod a)$.

