Homework set 14

Hilbert's tenth problem seminar, Fall 2013, due January 14th

By Niels Voorneveld

Exercise 1:

We are in the field $\mathbb{F}_q[Z]$. Remember that \mathcal{M} consists of triples (F, w, s) with s a q-th power, $w \leq s$ and $F = \sum_{i=0}^{d-1} \sum_{j=0}^{qw-1} \alpha_{ij} Z^{si+j}$ where d some natural number and all $a_{ij} \in \mathbb{F}_q$. Remember that $\theta : \mathcal{M} \to \mathbb{F}_q[V, W]$ sends $(\sum_{i=0}^{d-1} \sum_{j=0}^{w-1} \alpha_{ij} Z^{si+j}, w, s)$ to $\sum_{i=0}^{d-1} \sum_{j=0}^{w-1} \alpha_{ij} V^i W^j$.

Let $(F_1, w, s), (F_2, w, s) \in \mathcal{M}$. a) Prove that $\theta(F_1, w, s) + \theta(F_2, w, s) = \theta(F_1 + F_2, w, s)$

Proof:

We can write $F_1 = \sum_{i=0}^{d_1-1} \sum_{j=0}^{w-1} \alpha_{ij} Z^{si+j}$ and $F_2 = \sum_{i=0}^{d_2-1} \sum_{j=0}^{w-1} \beta_{ij} Z^{si+j}$. Take $d = max(d_1, d_2)$. Notice that for this new d, we can still write: $F_1 = \sum_{i=0}^{d-1} \sum_{j=0}^{w-1} \alpha_{ij} Z^{si+j}$ and $F_2 = \sum_{i=0}^{d-1} \sum_{j=0}^{w-1} \beta_{ij} Z^{si+j}$, where we can take the α 's and β 's zero if they are out of range. (So $\alpha_{ij} = 0$ if $i >= d_1$ and $\beta_{ij} = 0$ if $j >= d_2$).

So $\theta(F_1, w, s) = \sum_{i=0}^{d-1} \sum_{j=0}^{w-1} \alpha_{ij} V^i W^j$ and $\theta(F_2, w, s) = \sum_{i=0}^{d-1} \sum_{j=0}^{w-1} \beta_{ij} V^i W^j$ Hence $\theta(F_1, w, s) + \theta(F_2, w, s) = \sum_{i=0}^{d-1} \sum_{j=0}^{w-1} (\alpha_{ij} + \beta_{ij}) V^i W^j$. On the other hand: $F_1 + F_2 = \sum_{i=0}^{d-1} \sum_{j=0}^{w-1} \alpha_{ij} Z^{si+j} + \sum_{i=0}^{d-1} \sum_{j=0}^{w-1} \beta_{ij} Z^{si+j} = \sum_{i=0}^{d-1} \sum_{j=0}^{w-1} (\alpha_{ij} + \beta_{ij}) V^i W^j$. βZ^{si+j} . Since the summation range has not changed, we see that $F_1 + F_2$ is still a stride polynomial of degree w-s, or in other words, $(F_1 + F_2, w, s)$ is an element of \mathcal{M} . For this element: $\theta(F_1 + F_2, w, s) = \sum_{i=0}^{d-1} \sum_{j=0}^{w-1} (\alpha_{ij} + \beta_{ij}) V^i W^j$ hence the equation is satisfied.

b) Prove that if $2w \leq s$, $\theta(F_1, w, s) \cdot \theta(F_2, w, s) = \theta(F_1F_2, 2w, s)$ **Proof:**

 $F_1F_2 = (\sum_{i=0}^{d-1} \sum_{j=0}^{w-1} \alpha_{ij} Z^{si+j}) \cdot (\sum_{i=0}^{d-1} \sum_{j=0}^{w-1} \beta_{ij} Z^{si+j}) = \sum_{i=0}^{d-1} \sum_{j=0}^{w-1} \sum_{h=0}^{d-1} \sum_{k=0}^{w-1} \alpha_{ij} \beta_{hk} Z^{s(i+h)+j+k} = \sum_{a=0}^{2d-2} \sum_{b=0}^{2w-2} (\sum_{i=0}^{a} \sum_{j=0}^{b} \alpha_{ij} \beta_{(a-i)(b-j)}) Z^{sa+b}.$ So this is a stride polynomial of degree 2w - 1, s, so also of degree 2w, s. Since by assumption $2w \leq s$ and s of course is still a power of q, $(F_1F_2, 2w, s)$ is an element of \mathcal{M} . So can calculate:

 $\theta(F_1F_2, w, s) = (\sum_{i=0}^{d-1} \sum_{j=0}^{w-1} \alpha_{ij} Z^{si+j}) \cdot (\sum_{i=0}^{d-1} \sum_{j=0}^{w-1} \beta_{ij} Z^{si+j}) = \sum_{i=0}^{d-1} \sum_{j=0}^{w-1} \sum_{k=0}^{d-1} \alpha_{ij} \beta_{kk} Z^{si+j} = \sum_{i=0}^{d-1} \sum_{j=0}^{w-1} \sum_{k=0}^{w-1} \alpha_{ij} \beta_{kk} Z^{si+j}$ $\Sigma_{a=0}^{2d-2} \Sigma_{b=0}^{2w-2} (\Sigma_{i=0}^{a} \Sigma_{j=0}^{b} \alpha_{ij} \beta_{(a-i)(b-j)}) V^{a} W^{b}.$

On the other hand: $\theta(F_1, w, s) \cdot \theta(F_2, w, s) = (\sum_{i=0}^{d-1} \sum_{j=0}^{w-1} \alpha_{ij} V^i W^j) \cdot (\sum_{i=0}^{d-1} \sum_{j=0}^{w-1} \beta_{ij} V^i W^j) = \sum_{i=0}^{d-1} \sum_{j=0}^{w-1} \sum_{k=0}^{d-1} \sum_{k=0}^{w-1} \alpha_{ij} \beta_{hk} V^{i+h} W^{j+k} = \sum_{a=0}^{2d-2} \sum_{b=0}^{2w-2} (\sum_{i=0}^{a} \sum_{j=0}^{b} \alpha_{ij} \beta_{(a-i)(b-j)}) V^a W^b$, so the equation is satisfied.

Exercise 2:

a) Prove that the following function: $\delta: \mathbb{F}_q[Z] \times \mathbb{F}_q[Z] \to \mathbb{F}_q[Z], (A, B) \mapsto A^p Z + B^p$ is injective.

Proof:

Take an arbitrary element of $F_1, F_2 \in \mathbb{F}_q[Z]$ which we can write the following way: $F_1 = \sum_{i=0}^d \alpha_i Z^i$ and $F_2 = \sum_{i=0}^d \beta_i Z^i$, where $d \in \mathbb{N}$ and all $\alpha_i, \beta_i \in \mathbb{F}$ (again, d can be taken large enough: d = $max(deg(F_1), deg(F_2))$, or even arbitrarily larger).

-Since p is the characteristic of the field, a sum to the power p is the same as the sum of the elements individually to the power p.

-Also the map: $(.)^p$: $\mathbb{F}_q \to \mathbb{F}_q$ is a bijection. So: $\delta(F_1, F_2) = (\Sigma_{i=0}^d \alpha_i Z^i)^p Z + (\Sigma_{i=0}^d \beta_i Z^i)^p = \Sigma_{i=0}^d \alpha_i^p Z^{ip} Z + \Sigma_{i=0}^d \beta_i^p Z^{ip} = \Sigma_{i=0}^d (\alpha_i^p Z^{ip+1} + \beta_i^p Z^{ip})$. Since p > 1, none of the Z powers Z^{ip} coincide with Z^{iP+1} . So the image is fully determined by the coefficients α_i^p and β_i^p . So if we have two other elements F_3, F_4 of $\mathbb{F}_q[Z]$, such that $(F_1, F_2) \neq (F_3, F_4)$, at least one of the α 's or one of the β 's must be different, so at least one of the α_i^p or β_i^p must be different. Hence, they will give an other image under δ . So δ is injective. Also note that this function is diophantine.

b) Knowing that any r.e. subset of $\mathbb{F}_q[Z]$ is diophantine in $\mathbb{F}_q[Z]$, prove that any r.e. subset of $\mathbb{F}_q[Z]^k$ for some k > 1 is diophantine in $\mathbb{F}_q[Z]$.

Proof:

With induction on n, we are going to prove that any r.e. subset of $\mathbb{F}_q[Z]^n$ is diophantine over $\mathbb{F}_q[Z].$

The induction basis, n = 1 is already given.

Induction step: Assume for n > 0 that any r.e. subset of $\mathbb{F}_q[Z]^n$ is diophantine. Take arbitrary r.e. subset of $A \subset \mathbb{F}_q[Z]^{n+1}$. So A consists of elements of the form $(a_0, a_1, ..., a_n)$. Now define $\delta_n : \mathbb{F}_q[Z]^{n+1} \to \mathbb{F}_q[Z]^n$ by taking δ of the first two elements, so $\delta_n(a_0, a_1, ..., a_n) =$ $(\delta(a_0, a_1), a_2, ..., a_n)$. Since δ is injective and diophantine, δ_n is also injective and diophantine. So $B := \delta_n(A)$ is r.e. in $\mathbb{F}_q[Z]^n$. So by the hypothesis, B is diophantine. Hence the following statement gives a diophantine expression of A:

 $x \in A \Leftrightarrow \delta_n(x) \in B$. So A is diophantine.

Hence any r.e. subset of $\mathbb{F}_q[Z]^{n+1}$ is diophantine over $\mathbb{F}_q[Z]$. So the induction proof has been completed.

Exercise 3:

Take F to be a recursive infinite algebraic extension of the field \mathbb{F}_p , with p some prime. Take q a power of p. Take $X \in \mathbb{F}[Z]$ and assume the following:

 $(\exists a, b, u) : X \in \mathcal{A}_u$
$$\begin{split} &\wedge q^a > u \wedge q^b > u \wedge gcd(a,b) = 1 \\ &\wedge X^{q^a} \equiv X \pmod{Z^{q^a} - Z} \\ &\wedge X^{q^b} \equiv X \pmod{Z^{q^b} - Z} \end{split}$$

Remember from the lecture that if $X \epsilon \mathcal{A}_u$ than $deg(X) \leq u$.

Prove that $X \in \mathbb{F}_q[Z]$ (Hint, remember last week's hand-in exercise).

Proof:

Take X, a, b, u as in the assumption. Since $X \in \mathcal{A}_u$ we have that $deg(X) \leq u$, so we can write $X = \sum_{i=0}^{u} \alpha_i Z^i$ with all $\alpha_i \in \mathbb{F}$. Since q is a power of p prime, and p is the characteristic of the field \mathbb{F} , we have that for powers of q the same rule applies as before: the Power of sum is the sum of powers.

Hence in particular for q^a :

 $X^{q^a} = (\Sigma_{i=0}^u \alpha_i Z^i)^{q^a} = \Sigma_{i=0}^u \alpha_i^{q^a} Z^{q^a}i.$ Looking at this for modulo $Z^{q^a} - Z$, we know that because $Z^{q^a} \equiv Z \pmod{Z^{q^a} - Z}, X^{q^a} \equiv \Sigma_{i=0}^u \alpha_i^{q^a} Z^i.$ By our assumption, this is equivalent to X itself

(mod $Z^{q^a} - Z$). But notice that $deg(X) \leq u < q^a = deg(Z^{q^a} - Z)$, hence the $X^{q^a} = X$ (Equivalence is equality). So $\Sigma_{i=0}^u \alpha_i^{q^a} Z^i = \Sigma_{i=0}^u \alpha_i Z^i$, so for all i, $\alpha_i^{q^a} = \alpha_i$. But that means all $\alpha_i \epsilon \mathbb{F}_{q^a}$. By the same reasoning, all $\alpha_i \epsilon \mathbb{F}_{q^b}$. So by last week's exercise: all $\alpha_i \epsilon \mathbb{F}_{q^a} \cap \mathbb{F}_{q^b} = \mathbb{F}_{q^{gcd(a,b)}} = \mathbb{F}_q$. Hence $X \epsilon \mathbb{F}_q[Z]$.

Points: Exercise 1: 0.5 points: Noting that two elements can have the same d. 1 point: Calculation in 1a. 1.5 points: Calculation in 1b. 0.5 points: Checking if $(F_1F_2, 2w, s)$ is a proper element of \mathcal{M} .

Exercise 2:

1 point: Calculation of the image of an element under δ

1 point: Finishing argument of injectivity.

1.5 points: answer question 2b.

Exercise 3:

1 point: Writing down X and calculating X^{q^a} and X^{q^b} .

1 point: Arguing that equivalence is identity.

1 point: Finishing the proof.