Homework set 14

Hilbert's tenth problem seminar, Fall 2013, due January 14th

By Niels Voorneveld

Exercise 1:

We are in the field $\mathbb{F}_{q}[Z]$. Remember that \mathcal{M} consists of triples (F, w, s) with s a q-th power, $w \leq s$ and $F=\Sigma_{i=0}^{d-1} \Sigma_{j=0}^{w-1} \alpha_{i j} Z^{s i+j}$ where d some natural number and all $a_{i j} \in \mathbb{F}_{q}$.
Remember that $\theta: \mathcal{M} \rightarrow \mathbb{F}_{q}[V, W]$ sends $\left(\Sigma_{i=0}^{d-1} \Sigma_{j=0}^{w-1} \alpha_{i j} Z^{s i+j}, w, s\right)$ to $\Sigma_{i=0}^{d-1} \Sigma_{j=0}^{w-1} \alpha_{i j} V^{i} W^{j}$.
Let $\left(F_{1}, w, s\right),\left(F_{2}, w, s\right) \in \mathcal{M}$.
a) Prove that $\theta\left(F_{1}, w, s\right)+\theta\left(F_{2}, w, s\right)=\theta\left(F_{1}+F_{2}, w, s\right)$

Proof:

We can write $F_{1}=\Sigma_{i=0}^{d_{1}-1} \Sigma_{j=0}^{w-1} \alpha_{i j} Z^{s i+j}$ and $F_{2}=\Sigma_{i=0}^{d_{2}-1} \Sigma_{j=0}^{w-1} \beta_{i j} Z^{s i+j}$.
Take $d=\max \left(d_{1}, d_{2}\right)$. Notice that for this new d, we can still write:
$F_{1}=\Sigma_{i=0}^{d-1} \Sigma_{j=0}^{w-1} \alpha_{i j} Z^{s i+j}$ and $F_{2}=\Sigma_{i=0}^{d-1} \Sigma_{j=0}^{w-1} \beta_{i j} Z^{s i+j}$, where we can take the α 's and β 's zero if they are out of range. (So $\alpha_{i j}=0$ if $i>=d_{1}$ and $\beta_{i j}=0$ if $j>=d_{2}$).

So $\theta\left(F_{1}, w, s\right)=\Sigma_{i=0}^{d-1} \Sigma_{j=0}^{w-1} \alpha_{i j} V^{i} W^{j}$ and $\theta\left(F_{2}, w, s\right)=\Sigma_{i=0}^{d-1} \Sigma_{j=0}^{w-1} \beta_{i j} V^{i} W^{j}$
Hence $\theta\left(F_{1}, w, s\right)+\theta\left(F_{2}, w, s\right)=\Sigma_{i=0}^{d-1} \Sigma_{j=0}^{w-1}\left(\alpha_{i j}+\beta_{i j}\right) V^{i} W^{j}$.
On the other hand: $F_{1}+F_{2}=\Sigma_{i=0}^{d-1} \Sigma_{j=0}^{w-1} \alpha_{i j} Z^{s i+j}+\Sigma_{i=0}^{d-1} \Sigma_{j=0}^{w-1} \beta_{i j} Z^{s i+j}=\Sigma_{i=0}^{d-1} \Sigma_{j=0}^{w-1}\left(\alpha_{i j}+\right.$ $\beta) Z^{s i+j}$. Since the summation range has not changed, we see that $F_{1}+F_{2}$ is still a stride polynomial of degree $w-s$, or in other words, $\left(F_{1}+F_{2}, w, s\right)$ is an element of \mathcal{M}. For this element: $\theta\left(F_{1}+F_{2}, w, s\right)=\Sigma_{i=0}^{d-1} \Sigma_{j=0}^{w-1}\left(\alpha_{i j}+\beta_{i j}\right) V^{i} W^{j}$ hence the equation is satisfied.
b) Prove that if $2 w \leq s, \theta\left(F_{1}, w, s\right) \cdot \theta\left(F_{2}, w, s\right)=\theta\left(F_{1} F_{2}, 2 w, s\right)$

Proof:

$F_{1} F_{2}=\left(\Sigma_{i=0}^{d-1} \Sigma_{j=0}^{w-1} \alpha_{i j} Z^{s i+j}\right) \cdot\left(\Sigma_{i=0}^{d-1} \Sigma_{j=0}^{w-1} \beta_{i j} Z^{s i+j}\right)=\Sigma_{i=0}^{d-1} \Sigma_{j=0}^{w-1} \Sigma_{h=0}^{d-1} \Sigma_{k=0}^{w-1} \alpha_{i j} \beta_{h k} Z^{s(i+h)+j+k}=$ $\Sigma_{a=0}^{2 d-2} \Sigma_{b=0}^{2 w-2}\left(\Sigma_{i=0}^{a} \Sigma_{j=0}^{b} \alpha_{i j} \beta_{(a-i)(b-j)}\right) Z^{s a+b}$. So this is a stride polynomial of degree $2 w-1, s$, so also of degree $2 w, s$. Since by assumption $2 w \leq s$ and s of course is still a power of $q,\left(F_{1} F_{2}, 2 w, s\right)$ is an element of \mathcal{M}. So can calculate:
$\theta\left(F_{1} F_{2}, w, s\right)=\left(\Sigma_{i=0}^{d-1} \Sigma_{j=0}^{w-1} \alpha_{i j} Z^{s i+j}\right) \cdot\left(\Sigma_{i=0}^{d-1} \Sigma_{j=0}^{w-1} \beta_{i j} Z^{s i+j}\right)=\Sigma_{i=0}^{d-1} \Sigma_{j=0}^{w-1} \Sigma_{h=0}^{d-1} \Sigma_{k=0}^{w-1} \alpha_{i j} \beta_{h k} Z^{s i+j}=$ $\Sigma_{a=0}^{2 d-2} \Sigma_{b=0}^{2 w-2}\left(\Sigma_{i=0}^{a} \Sigma_{j=0}^{b} \alpha_{i j} \beta_{(a-i)(b-j)}\right) V^{a} W^{b}$.
On the other hand: $\theta\left(F_{1}, w, s\right) \cdot \theta\left(F_{2}, w, s\right)=\left(\Sigma_{i=0}^{d-1} \Sigma_{j=0}^{w-1} \alpha_{i j} V^{i} W^{j}\right) \cdot\left(\Sigma_{i=0}^{d-1} \Sigma_{j=0}^{w-1} \beta_{i j} V^{i} W^{j}\right)=$ $\Sigma_{i=0}^{d-1} \Sigma_{j=0}^{w-1} \Sigma_{h=0}^{d-1} \Sigma_{k=0}^{w-1} \alpha_{i j} \beta_{h k} V^{i+h} W^{j+k}=\Sigma_{a=0}^{2 d-2} \Sigma_{b=0}^{2 w-2}\left(\Sigma_{i=0}^{a} \Sigma_{j=0}^{b} \alpha_{i j} \beta_{(a-i)(b-j)}\right) V^{a} W^{b}$, so the equation is satisfied.

Exercise 2:

a) Prove that the following function:
$\delta: \mathbb{F}_{q}[Z] \times \mathbb{F}_{q}[Z] \rightarrow \mathbb{F}_{q}[Z],(A, B) \mapsto A^{p} Z+B^{p}$ is injective.

Proof:

Take an arbitrary element of $F_{1}, F_{2} \in \mathbb{F}_{q}[Z]$ which we can write the following way: $F_{1}=\Sigma_{i=0}^{d} \alpha_{i} Z^{i}$ and $F_{2}=\Sigma_{i=0}^{d} \beta_{i} Z^{i}$, where $d \epsilon \mathbb{N}$ and all $\alpha_{i}, \beta_{i} \in \mathbb{F}$ (again, d can be taken large enough: $d=$ $\max \left(\operatorname{deg}\left(F_{1}\right), \operatorname{deg}\left(F_{2}\right)\right)$, or even arbitrarily larger).
-Since p is the characteristic of the field, a sum to the power p is the same as the sum of the elements individually to the power p.
-Also the map: (. $)^{p}: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ is a bijection.
So: $\delta\left(F_{1}, F_{2}\right)=\left(\Sigma_{i=0}^{d} \alpha_{i} Z^{i}\right)^{p} Z+\left(\Sigma_{i=0}^{d} \beta_{i} Z^{i}\right)^{p}=\Sigma_{i=0}^{d} \alpha_{i}^{p} Z^{i p} Z+\sum_{i=0}^{d} \beta_{i}^{p} Z^{i p}=\sum_{i=0}^{d}\left(\alpha_{i}^{p} Z^{i p+1}+\right.$ $\beta_{i}^{p} Z^{i p}$. Since $p>1$, none of the Z powers $Z^{i p}$ coincide with $Z^{i P+1}$. So the image is fully determined by the coeficients α_{i}^{p} and β_{i}^{p}. So if we have two other elements F_{3}, F_{4} of $\mathbb{F}_{q}[Z]$, such that $\left(F_{1}, F_{2}\right) \neq\left(F_{3}, F_{4}\right)$, at least one of the α 's or one of the β 's must be different, so at least one of the α_{i}^{p} or β_{i}^{p} must be different. Hence, they will give an other image under δ. So δ is injective. Also note that this function is diophantine.
b) Knowing that any r.e. subset of $\mathbb{F}_{q}[Z]$ is diophantine in $\mathbb{F}_{q}[Z]$, prove that any r.e. subset of $\mathbb{F}_{q}[Z]^{k}$ for some $k>1$ is diophantine in $\mathbb{F}_{q}[Z]$.

Proof:

With induction on n, we are going to prove that any r.e. subset of $\mathbb{F}_{q}[Z]^{n}$ is diophantine over $\mathbb{F}_{q}[Z]$.
The induction basis, $n=1$ is already given.
Induction step: Assume for $n>0$ that any r.e. subset of $\mathbb{F}_{q}[Z]^{n}$ is diophantine. Take arbitrary r.e. subset of $A \subset \mathbb{F}_{q}[Z]^{n+1}$. So A consists of elements of the form $\left(a_{0}, a_{1}, \ldots, a_{n}\right)$. Now define $\delta_{n}: \mathbb{F}_{q}[Z]^{n+1} \rightarrow \mathbb{F}_{q}[Z]^{n}$ by taking δ of the first two elements, so $\delta_{n}\left(a_{0}, a_{1}, \ldots, a_{n}\right)=$ $\left(\delta\left(a_{0}, a_{1}\right), a_{2}, \ldots, a_{n}\right)$. Since δ is injective and diophantine, δ_{n} is also injective and diophantine. So $B:=\delta_{n}(A)$ is r.e. in $\mathbb{F}_{q}[Z]^{n}$. So by the hypothesis, B is diophantine. Hence the following statement gives a diophantine expression of A :
$x \epsilon A \Leftrightarrow \delta_{n}(x) \epsilon B$. So A is diophantine.
Hence any r.e. subset of $\mathbb{F}_{q}[Z]^{n+1}$ is diophantine over $\mathbb{F}_{q}[Z]$. So the induction proof has been completed.

Exercise 3:

Take \mathbb{F} to be a recursive infinite algebraic extension of the field \mathbb{F}_{p}, with p some prime. Take q a power of p. Take $X \epsilon \mathbb{F}[Z]$ and assume the following:
$(\exists a, b, u): X \epsilon \mathcal{A}_{u}$
$\wedge q^{a}>u \wedge q^{b}>u \wedge \operatorname{gcd}(a, b)=1$
$\wedge X^{q^{a}} \equiv X\left(\bmod Z^{q^{a}}-Z\right)$
$\wedge X^{q^{b}} \equiv X\left(\bmod Z^{q^{b}}-Z\right)$
Remember from the lecture that if $X \epsilon \mathcal{A}_{u}$ than $\operatorname{deg}(X) \leq u$.
Prove that $X \in \mathbb{F}_{q}[Z]$
(Hint, remember last week's hand-in exercise).

Proof:

Take X, a, b, u as in the assumption. Since $X \in \mathcal{A}_{u}$ we have that $\operatorname{deg}(X) \leq u$, so we can write $X=\Sigma_{i=0}^{u} \alpha_{i} Z^{i}$ with all $\alpha_{i} \in \mathbb{F}$. Since q is a power of p prime, and p is the characteristic of the field \mathbb{F}, we have that for powers of q the same rule applies as before: the Power of sum is the sum of powers.
Hence in particular for q^{a} :
$X^{q^{a}}=\left(\sum_{i=0}^{u} \alpha_{i} Z^{i}\right)^{q^{a}}=\sum_{i=0}^{u} \alpha_{i}^{q^{a}} Z^{q^{a}}{ }^{i}$. Looking at this for modulo $Z^{q^{a}}-Z$, we know that because $Z^{q^{a}} \equiv Z\left(\bmod Z^{q^{a}}-Z\right), X^{q^{a}} \equiv \Sigma_{i=0}^{u} \alpha_{i}^{q^{a}} Z^{i}$. By our assumption, this is equivalent to X itself
$\left(\bmod Z^{q^{a}}-Z\right)$.
But notice that $\operatorname{deg}(X) \leq u<q^{a}=\operatorname{deg}\left(Z^{q^{a}}-Z\right)$, hence the $X^{q^{a}}=X$ (Equivalence is equality).
So $\Sigma_{i=0}^{u} \alpha_{i}^{q^{a}} Z^{i}=\Sigma_{i=0}^{u} \alpha_{i} Z^{i}$, so for all $i, \alpha_{i}^{q^{a}}=\alpha_{i}$. But that means all $\alpha_{i} \in \mathbb{F}_{q^{a}}$.
By the same reasoning, all $\alpha_{i} \in \mathbb{F}_{q^{b}}$. So by last week's exercise: all $\alpha_{i} \in \mathbb{F}_{q^{a}} \cap \mathbb{F}_{q^{b}}=\mathbb{F}_{q^{g c d(a, b)}}=\mathbb{F}_{q}$.
Hence $X \epsilon \mathbb{F}_{q}[Z]$.

Points: Exercise 1:
0.5 points: Noting that two elements can have the same d.

1 point: Calculation in 1a.
1.5 points: Calculation in 1 b .
0.5 points: Checking if $\left(F_{1} F_{2}, 2 w, s\right)$ is a proper element of \mathcal{M}.

Exercise 2:
1 point: Calculation of the image of an element under δ
1 point: Finishing argument of injectivity.
1.5 points: answer question 2 b .

Exercise 3:
1 point: Writing down X and calculating $X^{q^{a}}$ and $X^{q^{b}}$.
1 point: Arguing that equivalence is identity.
1 point: Finishing the proof.

