
Homework set 14

Hilbert’s tenth problem seminar, Fall 2013, due January 14th

By Niels Voorneveld

Exercise 1:
We are in the field Fq[Z]. Remember that M consists of triples (F,w, s) with s a q-th power,
w ≤ s and F = Σd−1

i=0 Σw−1
j=0 αijZ

si+j where d some natural number and all aijεFq.

Remember that θ :M→ Fq[V,W ] sends (Σd−1
i=0 Σw−1

j=0 αijZ
si+j , w, s) to Σd−1

i=0 Σw−1
j=0 αijV

iW j .

Let (F1, w, s), (F2, w, s)εM.
a) Prove that θ(F1, w, s) + θ(F2, w, s) = θ(F1 + F2, w, s)

Proof:
We can write F1 = Σd1−1

i=0 Σw−1
j=0 αijZ

si+j and F2 = Σd2−1
i=0 Σw−1

j=0 βijZ
si+j .

Take d = max(d1, d2). Notice that for this new d, we can still write:
F1 = Σd−1

i=0 Σw−1
j=0 αijZ

si+j and F2 = Σd−1
i=0 Σw−1

j=0 βijZ
si+j , where we can take the α’s and β’s zero

if they are out of range. (So αij = 0 if i >= d1 and βij = 0 if j >= d2).

So θ(F1, w, s) = Σd−1
i=0 Σw−1

j=0 αijV
iW j and θ(F2, w, s) = Σd−1

i=0 Σw−1
j=0 βijV

iW j

Hence θ(F1, w, s) + θ(F2, w, s) = Σd−1
i=0 Σw−1

j=0 (αij + βij)V
iW j .

On the other hand: F1 + F2 = Σd−1
i=0 Σw−1

j=0 αijZ
si+j + Σd−1

i=0 Σw−1
j=0 βijZ

si+j = Σd−1
i=0 Σw−1

j=0 (αij +

β)Zsi+j . Since the summation range has not changed, we see that F1 + F2 is still a stride poly-
nomial of degree w-s, or in other words, (F1 + F2, w, s) is an element of M. For this element:
θ(F1 + F2, w, s) = Σd−1

i=0 Σw−1
j=0 (αij + βij)V

iW j hence the equation is satisfied.

b) Prove that if 2w ≤ s, θ(F1, w, s) · θ(F2, w, s) = θ(F1F2, 2w, s)
Proof:
F1F2 = (Σd−1

i=0 Σw−1
j=0 αijZ

si+j)·(Σd−1
i=0 Σw−1

j=0 βijZ
si+j) = Σd−1

i=0 Σw−1
j=0 Σd−1

h=0Σw−1
k=0 αijβhkZ

s(i+h)+j+k =

Σ2d−2
a=0 Σ2w−2

b=0 (Σa
i=0Σb

j=0αijβ(a−i)(b−j))Z
sa+b. So this is a stride polynomial of degree 2w−1, s, so

also of degree 2w, s. Since by assumption 2w ≤ s and s of course is still a power of q, (F1F2, 2w, s)
is an element of M. So can calculate:
θ(F1F2, w, s) = (Σd−1

i=0 Σw−1
j=0 αijZ

si+j)·(Σd−1
i=0 Σw−1

j=0 βijZ
si+j) = Σd−1

i=0 Σw−1
j=0 Σd−1

h=0Σw−1
k=0 αijβhkZ

si+j =

Σ2d−2
a=0 Σ2w−2

b=0 (Σa
i=0Σb

j=0αijβ(a−i)(b−j))V
aW b.

On the other hand: θ(F1, w, s) · θ(F2, w, s) = (Σd−1
i=0 Σw−1

j=0 αijV
iW j) · (Σd−1

i=0 Σw−1
j=0 βijV

iW j) =

Σd−1
i=0 Σw−1

j=0 Σd−1
h=0Σw−1

k=0 αijβhkV
i+hW j+k = Σ2d−2

a=0 Σ2w−2
b=0 (Σa

i=0Σb
j=0αijβ(a−i)(b−j))V

aW b, so the equa-
tion is satisfied.

Exercise 2:
a) Prove that the following function:
δ : Fq[Z]× Fq[Z]→ Fq[Z], (A,B) 7→ ApZ +Bp is injective.

Proof:
Take an arbitrary element of F1, F2εFq[Z] which we can write the following way: F1 = Σd

i=0αiZ
i

and F2 = Σd
i=0βiZ

i, where dεN and all αi, βiεF (again, d can be taken large enough: d =
max(deg(F1), deg(F2)), or even arbitrarily larger).
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-Since p is the characteristic of the field, a sum to the power p is the same as the sum of the
elements individually to the power p.
-Also the map: (.)p : Fq → Fq is a bijection.
So: δ(F1, F2) = (Σd

i=0αiZ
i)pZ + (Σd

i=0βiZ
i)p = Σd

i=0α
p
iZ

ipZ + Σd
i=0β

p
i Z

ip = Σd
i=0(αp

iZ
ip+1 +

βp
i Z

ip). Since p > 1, none of the Z powers Zip coincide with ZiP+1. So the image is fully
determined by the coeficients αp

i and βp
i . So if we have two other elements F3, F4 of Fq[Z], such

that (F1, F2) 6= (F3, F4), at least one of the α’s or one of the β’s must be different, so at least
one of the αp

i or βp
i must be different. Hence, they will give an other image under δ. So δ is

injective. Also note that this function is diophantine.

b) Knowing that any r.e. subset of Fq[Z] is diophantine in Fq[Z], prove that any r.e. sub-
set of Fq[Z]k for some k > 1 is diophantine in Fq[Z].

Proof:
With induction on n, we are going to prove that any r.e. subset of Fq[Z]n is diophantine over
Fq[Z].
The induction basis, n = 1 is already given.
Induction step: Assume for n > 0 that any r.e. subset of Fq[Z]n is diophantine. Take arbi-
trary r.e. subset of A ⊂ Fq[Z]n+1. So A consists of elements of the form (a0, a1, ..., an). Now
define δn : Fq[Z]n+1 → Fq[Z]n by taking δ of the first two elements, so δn(a0, a1, ..., an) =
(δ(a0, a1), a2, ..., an). Since δ is injective and diophantine, δn is also injective and diophantine.
So B := δn(A) is r.e. in Fq[Z]n. So by the hypothesis, B is diophantine. Hence the following
statement gives a diophantine expression of A:
xεA⇔ δn(x)εB. So A is diophantine.
Hence any r.e. subset of Fq[Z]n+1 is diophantine over Fq[Z]. So the induction proof has been
completed.

Exercise 3:
Take F to be a recursive infinite algebraic extension of the field Fp, with p some prime. Take q
a power of p. Take XεF[Z] and assume the following:

(∃a, b, u) : XεAu

∧qa > u ∧ qb > u ∧ gcd(a, b) = 1
∧Xqa ≡ X (mod Zqa − Z)

∧Xqb ≡ X (mod Zqb − Z)

Remember from the lecture that if XεAu than deg(X) ≤ u.

Prove that XεFq[Z]
(Hint, remember last week’s hand-in exercise).

Proof:
Take X, a, b, u as in the assumption. Since XεAu we have that deg(X) ≤ u, so we can write
X = Σu

i=0αiZ
i with all αiεF. Since q is a power of p prime, and p is the characteristic of the

field F, we have that for powers of q the same rule applies as before: the Power of sum is the
sum of powers.
Hence in particular for qa:
Xqa = (Σu

i=0αiZ
i)q

a

= Σu
i=0α

qa

i Z
qai. Looking at this for modulo Zqa−Z, we know that because

Zqa ≡ Z (mod Zqa − Z), Xqa ≡ Σu
i=0α

qa

i Z
i. By our assumption, this is equivalent to X itself
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(mod Zqa − Z).
But notice that deg(X) ≤ u < qa = deg(Zqa −Z), hence the Xqa = X (Equivalence is equality).

So Σu
i=0α

qa

i Z
i = Σu

i=0αiZ
i, so for all i, αqa

i = αi. But that means all αiεFqa .
By the same reasoning, all αiεFqb . So by last week’s exercise: all αiεFqa ∩Fqb = Fqgcd(a,b) = Fq.
Hence XεFq[Z].

Points: Exercise 1:
0.5 points: Noting that two elements can have the same d.
1 point: Calculation in 1a.
1.5 points: Calculation in 1b.
0.5 points: Checking if (F1F2, 2w, s) is a proper element of M.

Exercise 2:
1 point: Calculation of the image of an element under δ
1 point: Finishing argument of injectivity.
1.5 points: answer question 2b.

Exercise 3:
1 point: Writing down X and calculating Xqa and Xqb .
1 point: Arguing that equivalence is identity.
1 point: Finishing the proof.
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