Hilbert's Tenth Problem Seminar
 Diophantine Sets over Some Rings of Algebraic Integers

Eduardo Gomezcaña

Exercise 1. Let K and L be number fields with $K \subset L$. Prove that
a) If R_{1} and R_{2} are Diophantine relations over O_{L} then $R_{1} \wedge R_{2}$ and $R_{1} \vee R_{2}$ are too.

Solution. We need to recall an exercise given by Jetze ${ }^{1}$ on week 12 of the seminar. Bringing the result to our terms, it will imply that both, disjunction and conjunction of two Diophantine sets over \mathcal{O}_{L} are Diophantine over \mathcal{O}_{L}, provided \mathcal{O}_{L} is an integral domain and its fraction field not algebraically closed.

The ring \mathcal{O}_{L} is indeed an integral domain as it is contained on a field. Additionally, we need to notice that L is the fraction field of \mathcal{O}_{L} and because there is a polynomial over \mathbb{Z} which have no roots on L, we must conclude L is not algebraically closed. As the comment made in the first paragraph, the desired result follows from here.
b) The relation $x \neq 0$ is Diophantine over \mathcal{O}_{L}.

Solution. For this part we claim that

$$
x \neq 0 \Leftrightarrow \exists y, v \in \mathcal{O}_{L} \cdot x y=(2 v-1)(3 v-1)
$$

If we assume the RHS, then, because $(2 v-1)(3 v-1)$ is never 0 and the fact that \mathcal{O}_{L} is an integral domain, $x \neq 0$.
Assume now $x \neq 0$. Suppose for a moment that there are elements v and z of \mathcal{O}_{L} such that $2 v+x z=1$, then immediately we would have that $x \mid(2 v-1)$ and thus $x \mid(2 v-1)(3 v-1)$; therefore there would be y in \mathcal{O}_{L} with $x y=$ $(2 v-1)(3 v-1)$; we suppose now there are no such numbers, then there must be an element t dividing both 2 and x and t not being a unit; we write in such a case $2=p t$ and $x=q t$. We consider now the ideal I generated by $p x$ and 3 which will need to be generated by 1 , otherwise we would obtain with that 2 and 3 have a common factor different than some unit. Thus there are elements v and z such that $3 v+x z=1$ to have that $x \mid(3 v-1)$ and in consequence $x \mid(2 v-1)(3 v-1)$ which in turn means that there is y in \mathcal{O}_{L} such that $x y=(2 v-1)(3 v-1)$.

[^0]c) If \mathbb{Z} is Diophantine over \mathcal{O}_{K} and if \mathcal{O}_{K} is Diophantine over \mathcal{O}_{L}, then \mathbb{Z} is Diophantine over \mathcal{O}_{L}.

Proof. By assumption, there is a polynomial Z over O_{K} such that

$$
x \in \mathbb{Z} \Leftrightarrow \exists y_{1}, \ldots, y_{m} \in \mathcal{O}_{K} . Z\left(x, y_{1}, \ldots, y_{m}\right)=0 .
$$

Because the coefficients of Z are in $\mathcal{O}_{K} \subset O_{L}$ and because \mathcal{O}_{K} is Diophantine over O_{L} we have that the RHS is also Diophantine over O_{L}. But this just means that \mathbb{Z} is Diophantine over \mathcal{O}_{L} as desired.
d) If \mathbb{Z} is Diophantine over \mathcal{O}_{L}, then \mathbb{Z} is Diophantine over \mathcal{O}_{K}.

Solution. We recall now that O_{K} and \mathcal{O}_{L} are free of finite rank \mathbb{Z}-modules, we denote by $\left[\mathcal{O}_{K}: \mathbb{Z}\right]$ and $\left[\mathcal{O}_{L}: \mathbb{Z}\right]$ their rank, respectively. It is not hard to see that $[K: \mathbb{Q}]=\left[\mathcal{O}_{K}: \mathbb{Z}\right]$ and $[L: \mathbb{Q}]=\left[\mathcal{O}_{L}: \mathbb{Z}\right]$, and because \mathcal{O}_{L} is a free \mathcal{O}_{K}-module, we have

$$
\begin{aligned}
{[L: K] } & =[L: \mathbb{Q}] /[K: \mathbb{Q}] \\
& =\left[O_{L}: \mathbb{Z}\right] /\left[\mathcal{O}_{K}: \mathbb{Z}\right] \\
& =\left[\mathcal{O}_{L}: \mathcal{O}_{K}\right] .
\end{aligned}
$$

Meaning that \mathcal{O}_{L} is finitely presented as a module over \mathcal{O}_{K}. Lets take $n=$ [$\left.\mathcal{O}_{L}: \mathcal{O}_{K}\right]$ and allow $B=\left\{b_{1}, \ldots, b_{n}\right\}$ be an \mathcal{O}_{K}-linear independent subset of \mathcal{O}_{L} such that any element in \mathcal{O}_{L} can written as a \mathcal{O}_{K}-linear combination of B. If x in an element of \mathcal{O}_{L} we write $[x]_{B}=\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{O}_{K}^{n}$ if $x=\sum_{k=1}^{n} x_{k} b_{k}$.
Finally, if \mathbb{Z} is Diophantine over \mathcal{O}_{L} there is a polynomial P over \mathcal{O}_{L} such that

$$
x \in \mathbb{Z} \Leftrightarrow \exists y_{1}, \ldots, y_{m} \cdot P\left(x, y_{1}, \ldots, y_{m}\right)=0 .
$$

By writing $\left(x_{1}, \ldots, x_{m}\right)=[x]_{B}$ and $\left(y_{i 1}, \ldots, y_{i m}\right)=\left[y_{i}\right]_{B}$, there are polynomials P_{1}, \ldots, P_{m} over \mathcal{O}_{K} such that

$$
P\left(x, y_{1}, \ldots, y_{n}\right)=\sum_{k=1}^{m} P_{1}\left(x_{1}, \ldots, x_{m}, y_{11}, \ldots, y_{n m}\right) b_{i} .
$$

Because the \mathcal{O}_{K}-linear independence of B, P will have a root if and only if a simultaneous root of the polynomials P_{1}, \ldots, P_{m} exist. According to a) this will imply that \mathbb{Z} is Diophantine over O_{K} because the system induced by the polynomials P_{1}, \ldots, P_{m} is crafted through conjunction.

Exercise 2. Let L be a number field and assume \mathbb{Z} is Diophantine over \mathcal{O}_{L}. Prove that a relation is Diophantine over \mathcal{O}_{L} if and only if is recursively enumerable.

Solution. We need to recall again that for any number field L, its ring of integers \mathcal{O}_{L} is a free of finite rank \mathbb{Z}-module. We fix $B=\left\{b_{1}, \ldots, b_{m}\right\}$ as a \mathbb{Z}-linear
independent subset of \mathcal{O}_{L} such that any element of \mathcal{O}_{L} can be written as a \mathbb{Z}-linear combination of B. Thanks to this, we use the injection

$$
\begin{aligned}
{[\cdot]_{B}: \mathcal{O}_{L} } & \rightarrow \mathbb{Z}^{m} \\
x & \mapsto\left(x_{1}, \ldots, x_{m}\right),
\end{aligned}
$$

where $x=\sum_{i=1}^{m} x_{i} b_{i}$, to consider \mathcal{O}_{K} as a subset of \mathbb{Z}^{m}.
With this we prove our result. Take $S \subset \mathcal{O}_{K}$ and assume first that S is Diophantine over \mathcal{O}_{L}, then there is a polynomial P with coefficients in \mathcal{O}_{L} such that

$$
x \in S \Leftrightarrow \exists y_{1}, \ldots, y_{n} . P\left(x, y_{1}, \ldots, y_{n}\right)=0
$$

By writing $\left(x_{1}, \ldots, x_{m}\right)=[x]_{B}$ and $\left(y_{i 1}, \ldots, y_{i m}\right)=\left[y_{i}\right]_{B}$, there are polynomials P_{1}, \ldots, P_{m} over \mathbb{Z} such that

$$
P\left(x, y_{1}, \ldots, y_{n}\right)=\sum_{k=1}^{m} P_{1}\left(x_{1}, \ldots, x_{m}, y_{11}, \ldots, y_{n m}\right) b_{i} .
$$

Because of \mathbb{Z}-linear independence, P will have a root if and only if the system induced from the simultaneous roots of the polynomials P_{1}, \ldots, P_{m} has a solution. We know that in that case $[S]_{B}$ is Diophantine over \mathbb{Z}, and in consequence recursively enumerable by the DPRM-Theorem for \mathbb{Z}. We can conclude now S is recursively enumerable.

Assume now S is recursively enumerable. Then, by the DPRM-Theorem for $\mathbb{Z},[S]_{B}$ is Diophantine over \mathbb{Z}, this means there is a polynomial Q over \mathbb{Z} such that

$$
\left(x_{1}, \ldots, x_{m}\right) \in[S]_{B} \Leftrightarrow \exists y_{1}, \ldots, y_{n} \in \mathbb{Z} \cdot Q\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{m}\right)=0
$$

and we have

$$
x \in S \Leftrightarrow \exists x_{1}, \ldots x_{m}, y_{1}, \ldots, y_{n} \in \mathbb{Z} \cdot\binom{Q\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{m}\right)=0}{x=x_{1} b_{1}+\cdots+x_{m} b_{m}} .
$$

By exercise 1 part a) and through the assumption of \mathbb{Z} beign Diophantine over O_{L}, the RHS is Diophantine over \mathcal{O}_{L}. Thus S is Diophantine over \mathcal{O}_{L}.

[^0]: ${ }^{1}$ Proposition 1 in Recursively enumerable sets of polynomials over a finite field from Jeroen Demeyer.

