Hilbert's Tenth Problem Seminar Diophantine Sets over Some Rings of Algebraic Integers

Eduardo Gomezcaña

Exercise 1. Let K and L be number fields with $K \subset L$. Prove that

a) If R_1 and R_2 are Diophantine relations over O_L then $R_1 \wedge R_2$ and $R_1 \vee R_2$ are too.

Solution. We need to recall an exercise given by Jetze^1 on week 12 of the seminar. Bringing the result to our terms, it will imply that both, disjunction and conjunction of two Diophantine sets over \mathcal{O}_L are Diophantine over \mathcal{O}_L , provided \mathcal{O}_L is an integral domain and its fraction field not algebraically closed.

The ring \mathcal{O}_L is indeed an integral domain as it is contained on a field. Additionally, we need to notice that L is the fraction field of \mathcal{O}_L and because there is a polynomial over \mathbb{Z} which have no roots on L, we must conclude L is not algebraically closed. As the comment made in the first paragraph, the desired result follows from here.

b) The relation $x \neq 0$ is Diophantine over \mathcal{O}_L .

Solution. For this part we claim that

 $x \neq 0 \Leftrightarrow \exists y, v \in \mathcal{O}_L.xy = (2v-1)(3v-1).$

If we assume the RHS, then, because (2v-1)(3v-1) is never 0 and the fact that \mathcal{O}_L is an integral domain, $x \neq 0$.

Assume now $x \neq 0$. Suppose for a moment that there are elements v and z of \mathcal{O}_L such that 2v + xz = 1, then immediately we would have that x|(2v-1) and thus x|(2v-1)(3v-1); therefore there would be y in \mathcal{O}_L with xy = (2v-1)(3v-1); we suppose now there are no such numbers, then there must be an element t dividing both 2 and x and t not being a unit; we write in such a case 2 = pt and x = qt. We consider now the ideal I generated by px and 3 which will need to be generated by 1, otherwise we would obtain with that 2 and 3 have a common factor different than some unit. Thus there are elements v and z such that 3v + xz = 1 to have that x|(3v-1) and in consequence x|(2v-1)(3v-1) which in turn means that there is y in \mathcal{O}_L such that xy = (2v-1)(3v-1).

 $^{^1\}mathrm{Proposition}$ 1 in Recursively enumerable sets of polynomials over a finite field from Jeroen Demeyer.

c) If \mathbb{Z} is Diophantine over \mathcal{O}_K and if \mathcal{O}_K is Diophantine over \mathcal{O}_L , then \mathbb{Z} is Diophantine over \mathcal{O}_L .

Proof. By assumption, there is a polynomial Z over O_K such that

$$x \in \mathbb{Z} \Leftrightarrow \exists y_1, \dots, y_m \in \mathcal{O}_K.Z(x, y_1, \dots, y_m) = 0.$$

Because the coefficients of Z are in $\mathcal{O}_K \subset O_L$ and because \mathcal{O}_K is Diophantine over O_L we have that the RHS is also Diophantine over O_L . But this just means that \mathbb{Z} is Diophantine over \mathcal{O}_L as desired.

d) If \mathbb{Z} is Diophantine over \mathcal{O}_L , then \mathbb{Z} is Diophantine over \mathcal{O}_K .

Solution. We recall now that O_K and \mathcal{O}_L are free of finite rank \mathbb{Z} -modules, we denote by $[\mathcal{O}_K : \mathbb{Z}]$ and $[\mathcal{O}_L : \mathbb{Z}]$ their rank, respectively. It is not hard to see that $[K : \mathbb{Q}] = [\mathcal{O}_K : \mathbb{Z}]$ and $[L : \mathbb{Q}] = [\mathcal{O}_L : \mathbb{Z}]$, and because \mathcal{O}_L is a free \mathcal{O}_K -module, we have

$$\begin{split} [L:K] &= [L:\mathbb{Q}]/[K:\mathbb{Q}] \\ &= [O_L:\mathbb{Z}]/[\mathcal{O}_K:\mathbb{Z}] \\ &= [\mathcal{O}_L:\mathcal{O}_K]. \end{split}$$

Meaning that \mathcal{O}_L is finitely presented as a module over \mathcal{O}_K . Lets take $n = [\mathcal{O}_L : \mathcal{O}_K]$ and allow $B = \{b_1, \ldots, b_n\}$ be an \mathcal{O}_K -linear independent subset of \mathcal{O}_L such that any element in \mathcal{O}_L can written as a \mathcal{O}_K -linear combination of B. If x in an element of \mathcal{O}_L we write $[x]_B = (x_1, \ldots, x_n) \in \mathcal{O}_K^n$ if $x = \sum_{k=1}^n x_k b_k$.

Finally, if \mathbb{Z} is Diophantine over \mathcal{O}_L there is a polynomial P over \mathcal{O}_L such that

$$x \in \mathbb{Z} \Leftrightarrow \exists y_1, \dots, y_m. P(x, y_1, \dots, y_m) = 0.$$

By writing $(x_1, \ldots, x_m) = [x]_B$ and $(y_{i1}, \ldots, y_{im}) = [y_i]_B$, there are polynomials P_1, \ldots, P_m over \mathcal{O}_K such that

$$P(x, y_1, ..., y_n) = \sum_{k=1}^m P_1(x_1, \dots, x_m, y_{11}, \dots, y_{nm}) b_i.$$

Because the \mathcal{O}_K -linear independence of B, P will have a root if and only if a simultaneous root of the polynomials P_1, \ldots, P_m exist. According to a) this will imply that \mathbb{Z} is Diophantine over \mathcal{O}_K because the system induced by the polynomials P_1, \ldots, P_m is crafted through conjunction.

Exercise 2. Let L be a number field and assume \mathbb{Z} is Diophantine over \mathcal{O}_L . Prove that a relation is Diophantine over \mathcal{O}_L if and only if is recursively enumerable.

Solution. We need to recall again that for any number field L, its ring of integers \mathcal{O}_L is a free of finite rank Z-module. We fix $B = \{b_1, \ldots, b_m\}$ as a Z-linear

independent subset of \mathcal{O}_L such that any element of \mathcal{O}_L can be written as a \mathbb{Z} -linear combination of B. Thanks to this, we use the injection

$$[\cdot]_B : \mathcal{O}_L \to \mathbb{Z}^m$$

 $x \mapsto (x_1, \dots, x_m),$

where $x = \sum_{i=1}^{m} x_i b_i$, to consider \mathcal{O}_K as a subset of \mathbb{Z}^m .

With this we prove our result. Take $S \subset \mathcal{O}_K$ and assume first that S is Diophantine over \mathcal{O}_L , then there is a polynomial P with coefficients in \mathcal{O}_L such that

$$x \in S \Leftrightarrow \exists y_1, \dots, y_n . P(x, y_1, \dots, y_n) = 0.$$

By writing $(x_1, \ldots, x_m) = [x]_B$ and $(y_{i1}, \ldots, y_{im}) = [y_i]_B$, there are polynomials P_1, \ldots, P_m over \mathbb{Z} such that

$$P(x, y_1, ..., y_n) = \sum_{k=1}^m P_1(x_1, ..., x_m, y_{11}, ..., y_{nm})b_i.$$

Because of \mathbb{Z} -linear independence, P will have a root if and only if the system induced from the simultaneous roots of the polynomials P_1, \ldots, P_m has a solution. We know that in that case $[S]_B$ is Diophantine over \mathbb{Z} , and in consequence recursively enumerable by the DPRM-Theorem for \mathbb{Z} . We can conclude now Sis recursively enumerable.

Assume now S is recursively enumerable. Then, by the DPRM-Theorem for \mathbb{Z} , $[S]_B$ is Diophantine over \mathbb{Z} , this means there is a polynomial Q over \mathbb{Z} such that

$$(x_1,\ldots,x_m) \in [S]_B \Leftrightarrow \exists y_1,\ldots,y_n \in \mathbb{Z}.Q(x_1,\ldots,x_m,y_1,\ldots,y_m) = 0.$$

and we have

$$x \in S \Leftrightarrow \exists x_1, \dots, x_m, y_1, \dots, y_n \in \mathbb{Z}. \begin{pmatrix} Q(x_1, \dots, x_m, y_1, \dots, y_m) = 0\\ x = x_1 b_1 + \dots + x_m b_m \end{pmatrix}$$

By exercise 1 part a) and through the assumption of \mathbb{Z} beign Diophantine over O_L , the RHS is Diophantine over \mathcal{O}_L . Thus S is Diophantine over \mathcal{O}_L .