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Exercise 1. Let K and L be number fields with K ⊂ L. Prove that

a) If R1 and R2 are Diophantine relations over OL then R1 ∧ R2 and R1 ∨ R2

are too.

Solution. We need to recall an exercise given by Jetze1 on week 12 of the
seminar. Bringing the result to our terms, it will imply that both, disjunction
and conjunction of two Diophantine sets over OL are Diophantine over OL,
provided OL is an integral domain and its fraction field not algebraically
closed.

The ring OL is indeed an integral domain as it is contained on a field. Ad-
ditionally, we need to notice that L is the fraction field of OL and because
there is a polynomial over Z which have no roots on L, we must conclude L
is not algebraically closed. As the comment made in the first paragraph, the
desired result follows from here.

b) The relation x 6= 0 is Diophantine over OL.

Solution. For this part we claim that

x 6= 0⇔ ∃y, v ∈ OL.xy = (2v − 1)(3v − 1).

If we assume the RHS, then, because (2v− 1)(3v− 1) is never 0 and the fact
that OL is an integral domain, x 6= 0.

Assume now x 6= 0. Suppose for a moment that there are elements v and z
of OL such that 2v+xz = 1, then immediately we would have that x|(2v−1)
and thus x|(2v − 1)(3v − 1); therefore there would be y in OL with xy =
(2v−1)(3v−1); we suppose now there are no such numbers, then there must
be an element t dividing both 2 and x and t not being a unit; we write in
such a case 2 = pt and x = qt. We consider now the ideal I generated by px
and 3 which will need to be generated by 1, otherwise we would obtain with
that 2 and 3 have a common factor different than some unit. Thus there
are elements v and z such that 3v + xz = 1 to have that x|(3v − 1) and in
consequence x|(2v − 1)(3v − 1) which in turn means that there is y in OL

such that xy = (2v − 1)(3v − 1).

1Proposition 1 in Recursively enumerable sets of polynomials over a finite field from Jeroen
Demeyer.
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c) If Z is Diophantine over OK and if OK is Diophantine over OL, then Z is
Diophantine over OL.

Proof. By assumption, there is a polynomial Z over OK such that

x ∈ Z⇔ ∃y1, . . . , ym ∈ OK .Z(x, y1, . . . , ym) = 0.

Because the coefficients of Z are in OK ⊂ OL and because OK is Diophantine
over OL we have that the RHS is also Diophantine over OL. But this just
means that Z is Diophantine over OL as desired.

d) If Z is Diophantine over OL, then Z is Diophantine over OK .

Solution. We recall now that OK and OL are free of finite rank Z-modules,
we denote by [OK : Z] and [OL : Z] their rank, respectively. It is not hard
to see that [K : Q] = [OK : Z] and [L : Q] = [OL : Z], and because OL is a
free OK-module, we have

[L : K] = [L : Q]/[K : Q]

= [OL : Z]/[OK : Z]

= [OL : OK ].

Meaning that OL is finitely presented as a module over OK . Lets take n =
[OL : OK ] and allow B = {b1, . . . , bn} be an OK-linear independent subset
of OL such that any element in OL can written as a OK-linear combination
of B. If x in an element of OL we write [x]B = (x1, . . . , xn) ∈ On

K if
x =

∑n
k=1 xkbk.

Finally, if Z is Diophantine over OL there is a polynomial P over OL such
that

x ∈ Z⇔ ∃y1, . . . , ym.P (x, y1, . . . , ym) = 0.

By writing (x1, . . . , xm) = [x]B and (yi1, . . . , yim) = [yi]B , there are polyno-
mials P1, . . . , Pm over OK such that

P (x, y1, ..., yn) =

m∑
k=1

P1(x1, . . . , xm, y11, . . . , ynm)bi.

Because the OK-linear independence of B, P will have a root if and only
if a simultaneous root of the polynomials P1, . . . , Pm exist. According to a)
this will imply that Z is Diophantine over OK because the system induced
by the polynomials P1, . . . , Pm is crafted through conjunction.

Exercise 2. Let L be a number field and assume Z is Diophantine over OL.
Prove that a relation is Diophantine over OL if and only if is recursively enu-
merable.

Solution. We need to recall again that for any number field L, its ring of integers
OL is a free of finite rank Z-module. We fix B = {b1, . . . , bm} as a Z-linear
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independent subset of OL such that any element of OL can be written as a
Z-linear combination of B. Thanks to this, we use the injection

[·]B : OL → Zm

x 7→ (x1, . . . , xm),

where x =
∑m

i=1 xibi, to consider OK as a subset of Zm.
With this we prove our result. Take S ⊂ OK and assume first that S is

Diophantine over OL, then there is a polynomial P with coefficients in OL such
that

x ∈ S ⇔ ∃y1, . . . , yn.P (x, y1, ..., yn) = 0.

By writing (x1, . . . , xm) = [x]B and (yi1, . . . , yim) = [yi]B , there are polynomials
P1, . . . , Pm over Z such that

P (x, y1, ..., yn) =

m∑
k=1

P1(x1, . . . , xm, y11, . . . , ynm)bi.

Because of Z-linear independence, P will have a root if and only if the system
induced from the simultaneous roots of the polynomials P1, . . . , Pm has a solu-
tion. We know that in that case [S]B is Diophantine over Z, and in consequence
recursively enumerable by the DPRM-Theorem for Z. We can conclude now S
is recursively enumerable.

Assume now S is recursively enumerable. Then, by the DPRM-Theorem for
Z, [S]B is Diophantine over Z, this means there is a polynomial Q over Z such
that

(x1, . . . , xm) ∈ [S]B ⇔ ∃y1, . . . , yn ∈ Z.Q(x1, . . . , xm, y1, ..., ym) = 0.

and we have

x ∈ S ⇔ ∃x1, . . . xm, y1, . . . , yn ∈ Z.
(
Q(x1, . . . , xm, y1, . . . , ym) = 0

x = x1b1 + · · ·+ xmbm

)
.

By exercise 1 part a) and through the assumption of Z beign Diophantine over
OL, the RHS is Diophantine over OL. Thus S is Diophantine over OL.
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