Seminar H10: exercises week 2

Model solutions (Nils Donselaar)

October 11, 2013

Exercise 1

For natural numbers k, let S_{k} be the sequence of digits $k(k-1) \ldots 10$. Give an exponential Diophantine equation $E_{L}(a, b)=E_{R}(a, b)$ such that we have $\forall k \exists x E_{L}(x, k)=E_{R}(x, k)$ and $\forall x \forall k\left(E_{L}(x, k)=E_{R}(x, k) \rightarrow \exists b\left(\widetilde{x}(b)=S_{k}\right)\right)$, where $\widetilde{x}(b)$ denotes the digit representation of x relative to base b. Does this yield an exponential Diophantine representation of the relation $R(x, k): \Leftrightarrow$ $\exists b\left(\widetilde{x}(b)=S_{k}\right) ?(4+1$ pts. $)$

An example of a number whose presentation is the sequence S_{k} is the number $\sum_{i=0}^{k} i(k+2)^{i}=k(k+2)^{k}+\ldots+0(k+2)^{0}$. As we can see, this number has the representation $k(k-1) \ldots 10$ in base $k+2$. We see that for every k there is a number of this form $\sum_{i=0}^{k} i(k+2)^{i}$. Therefore, we wish to take $x=\sum_{i=0}^{k} i(k+2)^{i}$ as our exponential Diophantine equation. However, we first need to rewrite this sum as a simpler expression, since taking a sum of which the upper limit is one of the variables is not a standard operation when constructing exponential polynomials. We see $(k+1) \sum_{i=0}^{k} i(k+2)^{i}=(k+2) \sum_{i=0}^{k} i(k+2)^{i}-\sum_{i=0}^{k} i(k+2)^{i}=k(k+$ $2)^{k+1}+1-\sum_{i=0}^{k}(k+2)^{i}$. After multiplying both sides by $(k+1)$ we get $(k+1)^{2} \sum_{i=0}^{k} i(k+2)^{i}=k(k+1)(k+2)^{k+1}+k+1-(k+1) \sum_{i=0}^{k}(k+2)^{i}$. Now $(k+1) \sum_{i=0}^{k}(k+2)^{i}=(k+2) \sum_{i=0}^{k}(k+2)^{i}-\sum_{i=0}^{k}(k+2)^{i}=(k+2)^{k+1}-1$, so we find $(k+1)^{2} \sum_{i=0}^{k} i(k+2)^{i}=k(k+1)(k+2)^{k+1}+k+2-(k+2)^{k+1}$. This means $(k+1)^{2} x+(k+2)^{k+1}=k(k+1)(k+2)^{k+1}+k+2$ is an exponential Diophantine equation which meets our requirements.
We can check for this equation that it does not yield an exponential Diophantine representation of the relation $R(x, k)$, as we can give a counterexample to the opposite direction. Working in base 4 , the number 4 has digit representation 10 , so $\exists b\left(\widetilde{4}(b)=S_{1}\right)$. However, $2^{2} \cdot 4+3^{2}=25$, yet $1 \cdot 2 \cdot 3^{2}+1+2=21$, so $k^{2} x+(k+1)^{k+1}=k^{2}(k+1)^{k+1}+k+1$ does not hold (amongst others) for the pair $(x, k)=(4,1)$.

Exercise 2

Let $m(x)=k$ express that x masks exactly k numbers.
a) Give an exponential Diophantine representation of the property $m(x)=2$.
b) Let b and c be natural numbers such that $b \preceq c$. Give a formula which expresses $m(c-b)$ in terms of $m(c), m(b)$ and $m(b \wedge c)$.
c) Can you give a similar formula for arbitrary b and c (i.e., b and c for which the condition $b \preceq c$ does not necessarily hold)? $(1.5+1.5+2$ pts.)
a) One can verify that the only numbers which mask exactly 2 numbers are those numbers with exactly one 1 appearing in their binary representation. For instance, one can derive the general formula $m(x)=2_{x}^{n}$ where n_{x} is the number of 1's appearing in the binary representation of x; this formula can then be re-used in the next exercise. To derive this formula, simply notice that 0 only masks itself and that every added 1 doubles the amount of numbers masked, since it will then also mask those numbers which differ from a previously masked number only in that point of the representation (where they have a 1 instead of a 0). Numbers which mask exactly two numbers are thus of the form 2^{n} with n a natural number, as these are the numbers with the n-th coefficient as the only non-zero coefficient. An exponential Diophantine representation of the property $m(x)=2$ is therefore $m(x)=2 \Leftrightarrow \exists n\left(x=2^{n}\right)$.
b) Let b and c be natural numbers for which $b \preceq c$ is given, so $\forall k\left(b_{k} \leq c_{k}\right)$. The number of 1's appearing in the binary representation of $c-b$ is then exactly the number of 1 's in the representation of c minus the number of 1 's in the representation b. From this we obtain $m(c-b)=2^{n_{c-b}}=2^{n_{c}-n_{b}}=$ $\frac{2^{n_{c}}}{2^{n_{b}}}=\frac{m(c)}{m(b)}$.
c) [I forgot to note for completeness' sake that we still need to have $b \leq c$ for $c-b$ to have a binary representation, but I take this assumption as implicit.] To see that $m(c), m(b)$ and $m(b \wedge c)$ are not enough for the arbitrary case, observe that $m(1)=m(2)=2$ and $m(1 \wedge 4)=m(2 \wedge 4)=1$, yet $m(4-1)=4$ whereas $m(4-2)=2$. This shows that we are unable to distinguish between 1 and 2 using just $m(b)$ and $m(b \wedge 4)$, even though $m(4-b)$ is different for the two, which means that we cannot give a formula for $m(c-b)$ in terms of $m(c), m(b)$ and $m(b \wedge c)$. [The similar formula I had in mind was $m(c-b)=2^{\alpha_{2}(c-b, b)} \frac{m(c)}{m(b)}$. This ought to work since $\alpha_{2}(c-b, b)$ counts how many 1's are undone in the representation of $c-b$ when we add b to it, which is exactly the number of 1 's which are created when b is subtracted from c. Lacking a proper proof of the correctness of this formula, I didn't explicitly request a formula which does work, so I will also accept solutions which only establish the impossibility of giving a formula like the one in b).]

