Seminar on Hilbert's Tenth Problem Homework, due October 14-model solution

1a) For the first part, we use induction on n.
Basis. For $n=0$, we have $\alpha_{b}(0)=0=-\alpha_{b}(0)$. For $n=1$, we have $\alpha_{b}(1)=b \alpha_{b}(0)-\alpha_{b}(-1)=$ $-\alpha_{b}(-1)$, so $\alpha_{b}(-1)=-\alpha_{b}(1)$.
Step. Suppose $\alpha_{b}(-n)=-\alpha_{b}(n)$ and $\alpha_{b}(-(n+1))=-\alpha_{b}(n+1)$ for some $n \in \mathbb{N}$. We get

$$
\alpha_{n}(-(n+2))=b \alpha_{b}(-(n+1))-\alpha_{b}(-n)=-\left(b \alpha_{b}(n+1)-\alpha_{b}(n)\right)=-\alpha_{b}(n+2) .
$$

This completes the induction.
For the second part, we observe that

$$
\begin{aligned}
A_{b}(n) B_{b} & =\left(\begin{array}{cc}
b \alpha_{b}(n+1)-\alpha_{b}(n) & -\alpha_{b}(n+1) \\
b \alpha_{b}(n)-\alpha_{b}(n-1) & -\alpha_{b}(n)
\end{array}\right) \\
& =\left(\begin{array}{cc}
\alpha_{b}(n+2) & -\alpha_{b}(n+1) \\
\alpha_{b}(n+1) & -\alpha_{b}(n)
\end{array}\right)=A_{b}(n+1),
\end{aligned}
$$

for all $n \in \mathbb{Z}$. (Note that this is the same calculation as given during the presentation, only it works for all $n \in \mathbb{Z}$. One may also make this remark and claim the result of the calculation.) Since $A_{b}(0)=I_{2}$, we have $A_{b}(n)=B_{b}^{n}$ for all $n \in \mathbb{Z}$.

1b) We have

$$
A_{b}^{-1}(n)=B_{b}^{-n}=A_{b}(-n)=\left(\begin{array}{cc}
\alpha_{b}(-n+1) & -\alpha_{b}(-n) \\
\alpha_{b}(-n) & -\alpha_{b}(-n-1)
\end{array}\right)=\left(\begin{array}{cc}
-\alpha_{b}(n-1) & \alpha_{b}(n) \\
-\alpha_{b}(n) & \alpha_{b}(n+1)
\end{array}\right) .
$$

1c) We have $\alpha_{b}(m+1) \equiv \alpha_{b}(m-1) \bmod v$, so

$$
A_{b}(m) \equiv\left(\begin{array}{cc}
\alpha_{b}(m+1) & -\alpha_{b}(m) \\
\alpha_{b}(m) & -\alpha_{b}(m-1)
\end{array}\right) \equiv\left(\begin{array}{cc}
\alpha_{b}(m-1) & -\alpha_{b}(m) \\
\alpha_{b}(m) & -\alpha_{b}(m+1)
\end{array}\right) \equiv-A_{b}^{-1}(m) \bmod v .
$$

1d) According to exercise (c), we have $A_{b}^{2}(m) \equiv-A_{b}^{-1}(m) A_{b}(m) \equiv-I_{2} \bmod v$. This gives

$$
\begin{aligned}
A_{b}^{n} & \equiv B_{b}^{n} \equiv B_{b}^{2 l m \pm j} \equiv\left(\left(B_{b}^{m}\right)^{2}\right)^{l}\left(B_{b}^{j}\right)^{ \pm 1} \equiv\left(A_{b}^{2}(m)\right)^{l}\left(A_{b}(j)\right)^{ \pm 1} \equiv\left(-I_{2}\right)^{l}\left(A_{b}(j)\right)^{ \pm 1} \\
& \equiv \pm\left(A_{b}(j)\right)^{ \pm 1} \quad \bmod v .
\end{aligned}
$$

1e) According to exercise (d), we have $A_{b}(n) \equiv \pm A_{b}(j) \bmod v$ or $A_{b}(n) \equiv \pm A_{b}^{-1}(j) \bmod v$. That is:

$$
\left(\begin{array}{cc}
\alpha_{b}(n+1) & -\alpha_{b}(n) \\
\alpha_{b}(n) & -\alpha_{b}(n-1)
\end{array}\right) \equiv \pm\left(\begin{array}{cc}
\alpha_{b}(j+1) & -\alpha_{b}(j) \\
\alpha_{b}(j) & -\alpha_{b}(j-1)
\end{array}\right) \quad \bmod v,
$$

or

$$
\left(\begin{array}{cc}
\alpha_{b}(n+1) & -\alpha_{b}(n) \\
\alpha_{b}(n) & -\alpha_{b}(n-1)
\end{array}\right) \equiv \pm\left(\begin{array}{cc}
-\alpha_{b}(j-1) & \alpha_{b}(j) \\
-\alpha_{b}(j) & \alpha_{b}(j+1)
\end{array}\right) \quad \bmod v .
$$

Comparing the bottom left coefficients, we immediately see that, in both cases, $\alpha_{b}(n) \equiv \pm \alpha_{b}(j)$ $\bmod v$.

2a) Suppose that $x=\alpha_{b}(m)$ for some $m \in \mathbb{N}$. Define $y=\alpha_{b}(m+1)$. Then x and y satisfy the characteristic equation, that is $x^{2}-b x y+y^{2}=1$. Now we multiply by 4 and split off the square:

$$
\begin{align*}
x^{2}-b x y+y^{2}=1 & \Leftrightarrow 4 x^{2}-4 b x y+4 y^{2}=4 \\
& \Leftrightarrow 4 x^{2}-(b x)^{2}+\left((b x)^{2}-4 b x y+4 y^{2}\right)=4 \\
& \Leftrightarrow\left(4-b^{2}\right) x^{2}+(2 y-b x)^{2}=4 \\
& \Leftrightarrow(2 y-b x)^{2}=4+\left(b^{2}-4\right) x^{2} . \tag{1}
\end{align*}
$$

Since $2 y-b x$ clearly is an integer, $4+\left(b^{2}-4\right) x^{2}$ is a square.
For the other direction, suppose that $4+\left(b^{2}-4\right) x^{2}$ is a square. We can write $4+\left(b^{2}-4\right) x^{2}=k^{2}$ for a certain $k \in \mathbb{N}$. We have

$$
k \equiv k^{2} \equiv 4+\left(b^{2}-4\right) x^{2} \equiv b^{2} x^{2} \equiv b x \quad \bmod 2 .
$$

This means the number $k+b x$ is even. Since b, x and k are natural numbers, we have $k+b x \geq 0$. So we can write $k+b x=2 y$ for a certain natural number y. We now have $4+\left(b^{2}-4\right) x^{2}=k^{2}=$ $(2 y-b x)^{2}$. Using equivalence (1) in the other direction, we obtain $x^{2}-b x y+y^{2}=1$. So x and y are natural numbers satisfying the characteristic equation, so $x=\alpha_{b}(m)$ for some $m \in \mathbb{N}$.
(For $b=2$ the statement is quite trivial, stating that x is a natural number iff 4 is a square.)
2b) We proceed by induction on n.
Basis. We calculate $F_{2}=F_{1}+F_{0}=1+0=1$. For $n=0$, we have $\alpha_{3}(0)=0=F_{0}$ and for $n=1$, we have $\alpha_{3}(1)=1=F_{2}$.
Step. Suppose that $\alpha_{3}(n)=F_{2 n}$ and $\alpha_{3}(n+1)=F_{2 n+2}$ for some $n \in \mathbb{N}$. We get

$$
\begin{aligned}
\alpha_{3}(n+2) & =3 \alpha_{3}(n+1)-\alpha_{3}(n)=3 F_{2 n+2}-F_{2 n}=2 F_{2 n+2}+\left(F_{2 n+2}-F_{2 n}\right)=2 F_{2 n+2}+F_{2 n+1} \\
& =F_{2 n+2}+\left(F_{2 n+2}+F_{2 n+1}\right)=F_{2 n+2}+F_{2 n+3}=F_{2 n+4} .
\end{aligned}
$$

This completes the induction.
According to exercise (a) for $b=3$, we have that $4+\left(3^{2}-4\right) x^{2}$ is a square if and only if $x=\alpha_{3}(n)$ for some $n \in \mathbb{N}$. That is, $5 x^{2}+4$ is a square if and only if x is of the form $x=F_{2 n}$.

2c) Note that

$$
\begin{aligned}
\exists x \in \mathbb{N} \text { such that } x^{2}-\left(c^{2}-1\right) y^{2}=1 & \Leftrightarrow \exists x \in \mathbb{N} \text { such that } x^{2}=1+\left(c^{2}-1\right) y^{2} \\
& \Leftrightarrow 1+\left(c^{2}-1\right) y^{2} \text { is a square } \\
& \Leftrightarrow 4\left(1+\left(c^{2}-1\right) y^{2}\right) \text { is a square } \\
& \Leftrightarrow 4+\left((2 c)^{2}-4\right) y^{2} \text { is a square } \\
& \Leftrightarrow y=\alpha_{2 c}(n) \text { for some } n \in \mathbb{N} .
\end{aligned}
$$

This establishes the equality of the two given sets.

Marking scheme

1a) 2 pt . (1 pt. for each result)
1b) 1 pt .
1c) 2 pt .
1d) 3 pt .
1e) 2 pt .
2a) 5 pt .
I) 2 pt . The equivalence (1), possibly in only one direction.
II) 1 pt . Finishing the proof in the left-to-right-direction.
III) 2 pt . Finishing the proof in the right-to-left-direction. 1 pt . may be given for an important partial result (apart from (1)), such as introducing the number $k+b x$ or considering the equation modulo 2.
2b) 3 pt. (2 pt . for the first part, 1 pt . for the second part)
2c) 2 pt .
Grade $=($ number of points $) / 2$.

