1 Register machine A-2 points

We create a machine with 5 states and a stopping state and number the normal states 1 to 5 . In every state, we decrease the value of register r_{1} and go the next state (after state 5 we will go to state 1). If r_{1} is equal to zero, we stay in the same state unless we are in state 3 , then we go to the stopping state.
In this way, starting at state 1 , we simply keep subtracting 5 and halt when we end at 2 in this way, giving us exactly what we want.

2 Register machine B-1 point

The machine moves the value from r_{1} to r_{2}. It decreases r_{1} until it is zero and for every decrement, we increase r_{2}.

3 Register machine C-4 points

First note that $\binom{x}{2}$ is equal to the x-th triangle number, so what we are going to do is add the value of r_{1} to another register and then decrease r_{1} after which we repeat the process.
One state will decrease the value in r_{1}, going to a special state $s_{\text {end }}$ when it is zero and going to a copy state $s_{\text {copy }}$ otherwise. The state $s_{c o p y}$ will then copy the value of r_{1} twice (while emptying r_{1}), once to a register r_{2} and once to r_{3}. One of the copies will then be returned to register r_{1}, emptying one of the copy-registers. From then on, we will add the second copy register value to the answer-register r_{4} after which we return to the starting state that controls r_{1}.
In this way, we keep track of the value of r_{1}, which we want to be decreased in every 'round', while still maintaining that value and adding it to r_{4}. Now state $s_{\text {end }}$ will make sure (together with some other states) that registers r_{1}, r_{2}, r_{3} are emptied.

4 Register machine D-3 points

It computes 2^{x}. State s_{a} puts a 1 in register r_{2} to be doubled, state s_{0} decreases r_{1} for every round of doubling r_{2}, the doubling happens in states s_{1}, s_{2}, s_{3} and the states $s_{c 1}, s_{c 2}$ move the doubled value to r_{2} again.

5 How points are awarded

In every exercise, 1 point is awarded for a correct answer or a description of a machine that does the most important part of the computation. The other points are awarded for a good explanation of the answer and/or a detailed formal (or as precise as a formal) description.

