Seminar Hilbert 10 - Homework 5

Eric Faber

Due: October 28

In these exercises, \mathcal{F}_{0} is the class of functions in real variables represented by expressions combining the variables with integers and the number π by addition, substraction, multiplication and the sin function.

Exercise 1 (4 points) We have shown that there is no algorithm for deciding for an arbitrary $\Phi\left(\chi_{1}, \ldots, \chi_{m}\right) \in \mathcal{F}_{0}$ whether

$$
\exists \chi_{1}, \ldots, \chi_{m} \Phi\left(\chi_{1}, \ldots, \chi_{m}\right)=0
$$

In this exercise, we'll improve this result by showing that it is undecidable to determine whether

$$
\exists \chi_{1}, \ldots, \chi_{m} \Phi\left(\chi_{1}, \ldots, \chi_{m}\right)<1
$$

for arbitrary $\Phi \in \mathcal{F}_{0}$. To do this, we need to modify the function

$$
D^{2}\left(\chi_{1}, \ldots, \chi_{m}\right)+\sin ^{2}\left(\pi \chi_{1}\right)+\ldots+\sin ^{2}\left(\pi \chi_{m}\right)
$$

such that it takes values 0 precisely when the above does, and values >1 otherwise. Of course, the function still needs to be in \mathcal{F}_{0}.
a) (2 points) For $\chi_{1}, \ldots, \chi_{m}$ arbitrary real numbers, we denote by $\left(x_{1}, \ldots, x_{m}\right)$ the point with integer coordinates closest to $\left(\chi_{1}, \ldots, \chi_{m}\right)$. The distance between them is denoted by ϵ. Show that there is a polynomial B (computable in $D!$) such that for all $\chi_{1}, \ldots, \chi_{m}$:

$$
\left|D^{2}\left(\chi_{1}, \ldots, \chi_{m}\right)-D^{2}\left(x_{1}, \ldots, x_{m}\right)\right|<B\left(\chi_{1}, \ldots, \chi_{m}\right) \epsilon
$$

Hint: Use Taylor's theorem.
Solution: We start by Taylor expanding

$$
D^{2}\left(\chi_{1}, \ldots, \chi_{m}\right)-D^{2}\left(x_{1}, \ldots, x_{m}\right)
$$

with variables x_{1}, \ldots, x_{m} in the point $\left(\chi_{1}, \ldots, \chi_{m}\right)$:

$$
D^{2}\left(\chi_{1}, \ldots, \chi_{m}\right)-D^{2}\left(x_{1}, \ldots, x_{m}\right)=0-\sum_{\alpha} \frac{\partial^{\alpha} D^{2}\left(x_{1}, \ldots, x_{m}\right)}{\partial x^{\alpha}}\left(x_{i}-\chi_{i}\right)^{\alpha_{i}}
$$

where the summation is over all multi-indices $\alpha=\alpha_{1} \ldots \alpha_{m}$ where $\alpha_{i}<n$, with n the degree of D^{2}. Since $\left|x_{i}-\chi_{i}\right|<\epsilon$, and $\frac{\epsilon}{m}<1$ we can estimate for $\epsilon>0$:

$$
\begin{aligned}
\left|D^{2}\left(\chi_{1}, \ldots, \chi_{m}\right)-D^{2}\left(x_{1}, \ldots, x_{m}\right)\right| & \leq\left|\sum_{\alpha} \frac{\partial^{\alpha} D^{2}\left(x_{1}, \ldots, x_{m}\right)}{\partial x^{\alpha}}\left(\chi_{1}, \ldots, \chi_{m}\right)\left(x_{i}-\chi_{i}\right)^{\alpha_{i}}\right| \\
& \leq\left|\sum_{\alpha} \frac{\partial^{\alpha} D^{2}\left(x_{1}, \ldots, x_{m}\right)}{\partial x^{\alpha}}\left(\chi_{1}, \ldots, \chi_{m}\right) m^{|\alpha|}\right| \epsilon
\end{aligned}
$$

Now we let B be the polynomial

$$
B\left(\chi_{1}, \ldots, \chi_{m}\right)=1+\left(\sum_{\alpha} \frac{\partial^{\alpha} D^{2}\left(x_{1}, \ldots, x_{m}\right)}{\partial x^{\alpha}}\left(\chi_{1}, \ldots, \chi_{m}\right) m^{|\alpha|}\right)^{2}
$$

Clearly B can be computed from D, and:

$$
B\left(\chi_{1}, \ldots, \chi_{m}\right)>\left|\sum_{\alpha} \frac{\partial^{\alpha} D^{2}\left(x_{1}, \ldots, x_{m}\right)}{\partial x^{\alpha}}\left(\chi_{1}, \ldots, \chi_{m}\right) m^{|\alpha|}\right|
$$

Then the above yields:

$$
\left|D^{2}\left(\chi_{1}, \ldots, \chi_{m}\right)-D^{2}\left(x_{1}, \ldots, x_{m}\right)\right|<B\left(\chi_{1}, \ldots, \chi_{m}\right) \epsilon
$$

as desired.
Conclude that for

$$
\begin{equation*}
\epsilon<\frac{1}{2 B\left(\chi_{1}, \ldots, \chi_{m}\right)} \tag{1}
\end{equation*}
$$

we have

$$
D^{2}\left(\chi_{1}, \ldots, \chi_{m}\right)>\frac{1}{2}
$$

if $D\left(x_{1}, \ldots, x_{n}\right) \neq 0$
b) (1 point) Show that if (1) does not hold, we have:

$$
\sin ^{2}\left(\pi \chi_{1}\right)+\ldots+\sin ^{2}\left(\pi \chi_{m}\right) \geq \frac{1}{B^{2}\left(\chi_{1}, \ldots, \chi_{m}\right)}
$$

Solution: Recall that

$$
|\sin (\pi \chi)| \geq 2|\chi-x|
$$

for all $\chi \in\left[-\frac{1}{2}+x, \frac{1}{2}+x\right]$ where x is the nearest integer to χ. Since for all χ for which x is the nearest integer, we have $\chi \in\left[-\frac{1}{2}+x, \frac{1}{2}+x\right]$, it follows that:

$$
\sin \left(\pi \chi_{i}\right)^{2} \geq 4\left(\chi_{i}-x_{i}\right)^{2}
$$

Therefore

$$
\sin \left(\pi \chi_{1}\right)^{2}+\ldots+\sin \left(\pi \chi_{m}\right)^{2} \geq 4\left(\left(\chi_{1}-x_{1}\right)^{2}+\ldots+\left(\chi_{m}-x_{m}\right)^{2}\right)=4 \epsilon^{2}
$$

So if (1) does not hold:

$$
\sin \left(\pi \chi_{1}\right)^{2}+\ldots+\sin \left(\pi \chi_{m}\right)^{2} \geq 4\left(\frac{1}{2 B\left(\chi_{1}, \ldots, \chi_{m}\right)}\right)^{2}=\frac{1}{B^{2}\left(\chi_{1}, \ldots, \chi_{m}\right)}
$$

c) (1 point) Conclude that there is no algorithm for deciding for an arbitrary function $\Phi \in \mathcal{F}_{0}$ whether the inequality

$$
\Phi\left(\chi_{1}, \ldots, \chi_{m}\right)<1
$$

has a solution in real $\chi_{1}, \ldots, \chi_{m}$.
Solution: Suppose we can. Then we can decide for arbitrary D whether there is a real solution $\chi_{1}, \ldots, \chi_{m}$ to the inequality:

$$
2 D^{2}\left(\chi_{1}, \ldots, \chi_{m}\right)+B^{2}\left(\chi_{1}, \ldots, \chi_{m}\right)\left(\sin ^{2}\left(\pi \chi_{1}\right)+\ldots+\sin ^{2}\left(\pi \chi_{m}\right)\right)<1
$$

since B can be computed from D. But by the above estimates, this inequality holds if and only if $D\left(x_{1}, \ldots, x_{m}\right)=0$ where $\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{Z}^{m}$ is the closest point to $\left(\chi_{1}, \ldots, \chi_{m}\right)$ with integer coordinates (or one of the closest points). This contradicts the undecidability of Hilberts tenth problem.

Exercise 2 (6 points) In this exercise, we'll improve the undecidability result about functions in \mathcal{F}_{0} to the same result about functions in \mathcal{F}_{0} with only one real variable. The key is to prove that the image of the map

$$
\chi \mapsto\left(\chi \sin (\chi), \chi \sin \left(\chi^{3}\right), \ldots, \chi \sin \left(\chi^{2 m-1}\right)\right.
$$

lies dense in \mathbb{R}^{m}. For every m, we denote this map by f_{m}.
We will first prove the case where $m=2$.
a) (1 point) Let $y_{1}, y_{2}, \delta \in \mathbb{R}$ be arbitary real numbers, with $\delta>0$. Show that there are reals χ_{1}, χ_{2} such that:
(i) $\chi_{2}>\chi_{1}>\left|y_{2}\right|$
(ii) $\chi_{2} \sin \left(\chi_{2}\right)=y_{1}$
(iii) $\chi_{2}^{3}-\chi_{1}^{3}>2 \pi$
(iv) $\left(\chi_{2}-\chi_{1}\right)\left(\chi_{2}+1\right)<\delta$.

Hint: Choose an appropriate χ_{1} and define $\chi_{2}=\left(\chi_{1}^{2}+\delta / 2\right)^{1 / 2}$.
Solution: First assume $\chi_{1}>\left|y_{2}\right|+1$. Let $\chi_{2}=\left(\chi_{1}^{2}+\frac{\delta}{2}\right)^{\frac{1}{2}}$. Then $\left.\chi_{2}^{3}-\chi_{1}^{3}=\chi_{2}\left(\chi_{1}^{2}+\delta / 2\right)\right)-\chi_{2}^{2 m+1}>$ $\delta \chi_{2} / 2$. Then $\left(\chi_{2}-\chi_{1}\right)\left(\chi_{2}+1\right)<\left(\chi_{2}-\chi_{1}\right)\left(\chi_{2}+\chi_{1}\right)=\chi_{2}^{2}-\chi_{1}^{2}=\delta / 2<\delta$.

Now for $\chi_{1}>4 \pi / \delta, \chi_{1}, \chi_{2}$ satisfy (i),(iii),(iv). Therefore pick $\left.\chi_{1} \in\right] \max \left\{4 \pi / \delta,\left|y_{m}\right|+1\right\}, \infty[$ such that (ii) holds, which can be done by the intermediate value theorem.
b) (1 point) Let $y_{1}, y_{2}, \delta \in \mathbb{R}$ be arbitary real numbers, with $\delta>0$. Show that there is a χ such that

$$
\left|f_{1}(\chi)-y_{1}\right|<\delta \text { and } f_{2}(\chi)=\overline{y_{2}} \chi \sin \left(\chi^{3}\right)=y_{2}
$$

Conclude that the image of f_{2} lies dense in \mathbb{R}^{2}. Hint: Choose an appropriate χ between χ_{1} and χ_{2} in (a) and use the mean value theorem on $f_{1}(\chi)-y_{1}=f_{1}(\chi)-f_{1}\left(\chi_{2}\right)$ to make an estimate.

Solution: Pick χ_{1}, χ_{2} such that they satisfy (i)-(iv) above for this y_{1}, y_{2}, δ. Since $\chi_{2}^{3}-\chi_{1}^{3}>2 \pi$, there is $\chi_{1}<\chi<\chi_{2}$ such that $\chi \sin \left(\chi^{3}\right)=y_{2}$ (by the mean value theorem and the fact that $\left.\chi_{2}>\chi_{1}>\left|y_{2}\right|\right)$. Now I'll show that for this χ, we also have $\left|\chi \sin (\chi)-y_{1}\right|<\delta$. We use that $y_{1}=\chi_{2} \sin \left(\chi_{2}\right)$, so that:

$$
\begin{aligned}
\left|\chi \sin (\chi)-y_{1}\right| & =\left|\chi \sin (\chi)-\chi_{2} \sin \left(\chi_{2}\right)\right| \\
& \left.\leq\left(\chi_{2}-\chi\right) \cdot\left|\frac{d}{d t} t \sin t\right|_{t=x} \right\rvert\, \text { for some } \chi \leq x \leq \chi_{2}, \text { by the Mean Value Theorem } \\
& \leq\left(\chi_{2}-\chi_{1}\right) \cdot|x \cos (x)+\sin x| \text { for some } \chi \leq x \leq \chi_{2} \\
& \leq\left(\chi_{2}-\chi_{1}\right)\left(\chi_{2}+1\right)<\delta
\end{aligned}
$$

This finishes the proof.
c) (1 point) Let $y_{1}, \ldots, y_{m}, y_{m+1} \delta \in \mathbb{R}$ be arbitary real numbers, with $\delta>0$. Suppose f is a function such that $f(] \chi, \infty[)$ lies dense in \mathbb{R}^{m} for any χ. Show that there are reals χ_{1}, χ_{2} such that:
(i) $\chi_{2}>\chi_{1}>\left|y_{m+1}\right|$
(ii) $\left|f\left(\chi_{2}\right)-\left(y_{1}, \ldots, y_{m}\right)\right|<\delta$
(iii) $\chi_{2}^{2 m+1}-\chi_{1}^{2 m+1}>2 \pi$
(iv) $\left(\chi_{2}-\chi_{1}\right)\left((2 m-1) \chi_{2}^{2 m-1}+1\right)<\delta$.

Hint: Modify the proof in (a).
Solution: First assume $\chi_{1}>\left|y_{m}\right|+1$. Let $\chi_{2}=\left(\chi_{1}^{2 m}+\frac{\delta}{2(2 m-1)}\right)^{\frac{1}{2 m}}$. Then $\chi_{2}^{2 m+1}-\chi_{1}^{2 m+1}=$ $\chi_{2}\left(\chi_{1}^{2 m}+\delta /(2(2 m-1))\right)-\chi_{2}^{2 m+1}>\delta \chi_{2} /(2(2 m-1))$. Then $\left(\chi_{2}-\chi_{1}\right)\left((2 m-1) \chi_{2}^{2 m-1}+1\right)<$ $(2 m-1)\left(\chi_{2}-\chi_{1}\right)\left(\chi_{2}^{2 m-1}+\chi_{1}^{2 m-1}\right) \leq 2(2 m-1)\left(\chi_{2}^{2 m}-\chi_{1}^{2 m}\right)=\delta$.

Now for $\chi_{1}>2(2 m-1) \pi / \delta, \chi_{1}, \chi_{2}$ satisfy (i),(iii),(iv). Therefore pick $\left.\chi_{1} \in\right] \max \{2(2 m-$ 1) $\left.\pi / \delta,\left|y_{m}\right|+1\right\}, \infty[$ such that (ii) holds, this can be done by the assumption about f.
d) (2 points) Prove that the image of f_{m} lies dense in \mathbb{R}^{m}, for every $m \geq 1$.

Solution: The case for $m=1, m=2$ follows from the above. We take the inductive hypothesis that $f_{m}(] \chi, \infty[)$ lies dense in \mathbb{R}^{m} for any χ. Let $\left(y_{1}, \ldots, y_{m+1}\right) \in \mathbb{R}^{m+1}$ and $\epsilon>0$ be arbitary. Pick χ_{1}, χ_{2} as in (c) for $f=f_{m}$, and $\delta=\frac{\epsilon}{2(m-1)}$.

Since $\chi_{2}^{2 m+1}-\chi_{1}^{2 m+1}>2 \pi$, there is a $\chi_{1} \leq \chi \leq \chi_{2}$ such that $\chi \sin \left(\chi^{2 m+1}\right)=y_{m}$. Now for any $i \leq m-1$, we have by the mean value theorem:

$$
\begin{aligned}
\left|\left(f_{m}(\chi)\right)_{i}-y_{i}\right| & \leq\left|\left(f_{m}(\chi)\right)_{i}-\left(f_{m}\left(\chi_{2}\right)\right)_{i}\right|+\left|f_{m}\left(\chi_{2}\right)_{i}-y_{i}\right| \\
& \leq\left(\chi_{2}-\chi\right)\left(\left(f_{m}\right)_{i}^{\prime}(x)\right)+\delta \text { for some } \chi \leq x \leq \chi_{2} \\
& =\left(\chi_{2}-\chi\right)\left((2 i-1) x^{2 i-1} \cos x^{2 i-1}+\sin \left(x^{2 i-1}\right)\right)+\delta \text { for some } \chi \leq x \leq \chi_{2} \\
& \leq\left(\chi_{2}-\chi_{1}\right)\left((2 i-1) \chi_{2}^{2 i-1}+1\right) \\
& \leq\left(\chi_{2}-\chi_{1}\right)\left((2 m-1) \chi_{2}^{2 m-1}+1\right)+\delta \\
& <\delta+\delta=2 \delta
\end{aligned}
$$

Hence: $\mid\left(f_{m}(\chi)-\left(y_{1}, \ldots, y_{m}\right) \mid<2 \delta(m-1)=\epsilon\right.$. Since $\left(f_{m+1}(\chi)\right)_{m+1}=y_{m}$, it follows that $\left|f_{m+1}(\chi)-\left(y_{1}, \ldots, y_{m+1}\right)\right|<\epsilon$.

Since we can pick χ_{1}, χ_{2} arbitrarily large (by the proof of (c)), this proves the induction step.
e) (1 point) Show, using exercise 1, that there is no algorithm for deciding for an arbitary function $\Psi \in \mathcal{F}_{0}$ in one real variable whether the equation

$$
\Psi(\chi)<1
$$

has a real solution χ.
Solution: Assume we can. Then for an arbitrary $\Psi \in \mathcal{F}_{0}$ in m variables, we can determine whether

$$
\begin{equation*}
\Psi \circ f_{m}(\chi)<1 \tag{2}
\end{equation*}
$$

has a real solution χ, since $\Psi \circ f_{m} \in \mathcal{F}_{0}$. But $\Psi \circ f_{m}(\chi)<1$ has a real solution χ if and only if

$$
\Psi\left(\chi_{1}, \ldots, \chi_{m}\right)<1
$$

has a real solution $\chi_{1}, \ldots, \chi_{m}$: Suppose we have such a solution $\chi_{1}, \ldots, \chi_{m}$, then there is $\epsilon>0$ such that:

$$
\Psi\left(\chi_{1}, \ldots, \chi_{m}\right)<1-\epsilon
$$

Since Ψ is continuous, there is a $\delta>0$ such that for all $\left(\nu_{1}, \ldots, \nu_{m}\right)$ such that

$$
\left|\left(\nu_{1}, \ldots, \nu_{m}\right)-\left(\chi_{1}, \ldots, \chi_{m}\right)\right|<\delta
$$

we have $\left|\Psi\left(\chi_{1}, \ldots, \chi_{m}\right)-\Psi\left(\nu_{1}, \ldots, \nu_{m}\right)\right|<\epsilon / 2$. Since the image of f_{m} is dense, there is χ such that

$$
\left|f_{m}(\chi)-\left(\chi_{1}, \ldots, \chi_{m}\right)\right|<\delta
$$

So for such χ, it follows that $\Psi \circ f_{m}(\chi)<1-\epsilon / 2$.
So if we can decide (2), we contradict 1 a above.

