Homework set 6 solutions

Hilbert's tenth problem seminar, Fall 2013, due November 4th

By Niels Voorneveld

1a: A possible way to define 0 is as $c=0 \leftrightarrow \forall x:(x \cdot c=c)$. If $c=0$, the right hand side is trivial. If the right hand side is true, we have for $x=0,0=0 \cdot c=x \cdot c=c$.

1b: Take 1a as induction basis, hence 0 is arithmetically definable in terms of $\mathrm{S},+$ and \cdot Assume that we have proven that $n \epsilon \mathbf{Z}$ is arithmetically definable in terms of S and \cdot. Then $P(c)=c=S(n)$ and $M(c)=S(c)=n$ give arithmetical definitions of respectively $(n+1)$ and $(n-1)$ in terms of S and n (where n is defined in terms of S and \cdot). So by induction, all $n \in \mathbf{Z}$ are arithmetically definable in S and .

1c: Notice that $c(a+b)=c^{2} \Leftrightarrow S(a \cdot c) \cdot S(b \cdot c)=S[(c \cdot c) \cdot S(a \cdot b)]$. As long as c is not equal to zero, we have that $c(a+b)=c^{2} \Leftrightarrow a+b=c$. If $c=0$ then $a+b=c$ iff $a+b=0$ which is if and only if $a \cdot a=b \cdot b$ and either a is not b or $a=0$. In 1 b , we have proven that zero is arithmetically definable in terms of S and \cdot. So we can construct a statement defining $a+b=c$ by $A(a, b, c)=$ $[c=0 \wedge a \cdot a=b \cdot b \wedge(a=0 \vee \neg(a=b))] \vee[\neg(c=0) \wedge S(a \cdot c) \cdot S(b \cdot c)=S[(c \cdot c) \cdot S(a \cdot b)]$

2a: First note that the concept of positive integers (Pos) is arithmetically definable in terms of Int, + and \cdot over rationals: $\operatorname{Pos}(a) \leftrightarrow \neg(\forall x:(a \cdot x=a)) \wedge(\exists x, y, z, w:[\operatorname{Int}(x) \wedge \operatorname{Int}(y) \wedge \operatorname{Int}(z) \wedge$ $\operatorname{Int}(w) \wedge a=x \cdot x+y \cdot y+z \cdot z+w \cdot w])$.

Then, for any positive denominator a of a rational b, we have that $\operatorname{Pos}(a)$ and $\operatorname{Int}(a \cdot b)$. Hence, the smallest denominator can be written as:
$a=\operatorname{den}(b) \leftrightarrow \operatorname{Pos}(a) \wedge \operatorname{Int}(a \cdot b) \wedge \forall c:(\operatorname{Pos}(c) \wedge \operatorname{Int}(c \cdot b) \wedge \neg(c=a)) \rightarrow \exists d:(\operatorname{Pos}(d) \wedge a+d=c)$
2b: Note that $a>b$ iff $a \cdot \operatorname{den}(a) \cdot \operatorname{den}(b)>b \cdot \operatorname{den}(a) \cdot \operatorname{den}(b)$. Since both sides of the second inequality are an integer we thus have that: $a>b \leftrightarrow \exists c:(\operatorname{Pos}(c) \wedge(a \cdot \operatorname{den}(a) \cdot \operatorname{den}(b)=$ $b \cdot \operatorname{den}(a) \cdot \operatorname{den}(b)+c))$

2c: $a=\lfloor b\rfloor$ is true if and only if a is an integer and both $a<b \vee a=b$, and $a+1>b$ are true. To avoid using 1 , we can replace the second statement by $\forall c: \operatorname{Pos}(c) \rightarrow a+c>b$. Hence $a=\lfloor b\rfloor \leftrightarrow \operatorname{Int}(a) \wedge(a<b \vee a=b) \wedge \forall c:(\operatorname{Pos}(c) \rightarrow b<(a+c))$

3: Note, it was given in the exercise that $\mathcal{U}(c) \leftrightarrow c=1$, hence $\mathcal{U}(c)$ is true for a unique value of c. Denote 1 as the constant defined by \mathcal{U}. Secondly, it is needed that the relation Pos is closed under addition, which I forget to demand. People who explained that they needed this second fact and used good arguments to show that without them they couldn't solve the exercises, received all points.

B7: Take $\Phi(c)$ as the statement $\forall a, b:[\operatorname{Pos}(a) \wedge \operatorname{Pos}(b) \wedge(a+c=b+c)] \rightarrow a=b$. We will use induction to prove that this formula is true. Axiom B2 gives that $\Phi(1)$ is true, which is the induction basis. Assume now that for c we have $\Phi(c)$ is true. Take a and b such that $\operatorname{Pos}(a)$ and
$\operatorname{Pos}(b)$ are true and such that $a+(c+1)=b+(c+1)$. By B3 we have $a+(c+1)=(a+c)+1$ and $b+(c+1)=(b+c)+1$. So $(a+c)+1=(b+c)+1$. So by B2 $a+c=b+c$. By induction hypothesis, we have $a=b$. So we can conclude that $a+(c+1)=b+(c+1)$ implies $a=b$, so $\Phi(c+1)$ is true. So by B 6 we have that for all c with $\operatorname{Pos}(c), \Phi(c)$ is true, which is precisely the statement B 7 .

B9: Let $\Phi(c)$ be the statement: $\forall a, b:[\operatorname{Pos}(a) \wedge \operatorname{Pos}(b)] \rightarrow a+(b+c)=(a+b)+c$. B3 tells us $\Phi(1)$ is true. Assume for c where $\operatorname{Pos}(c)$ is true, that $\Phi(c)$ is true. Then for a and b with $\operatorname{Pos}(a)$ and $\operatorname{Pos}(b)$, we have $a+(b+(c+1))=a+((b+c)+1)=(a+(b+c))+1=((a+b)+c)+1=$ $(a+b)+(c+1)$ by B3,B3,Induction Hypothesis and B3 respectively. So $\Phi(c+1)$ is true, hence $\Phi(c)$ implies $\Phi(c+1)$. So by B6 we have that for all c with $\operatorname{Pos}(c), \Phi(c)$ is true.

B8: Let $\Phi(c)$ be the statement: $\operatorname{Pos}(c) \rightarrow c+1=1+c$. We will use induction to prove that this formula is true. Trivially, $\Phi(1)$ is true $(1+1=1+1)$. Now assume that for c with $\operatorname{Pos}(c)$ true, that $\Phi(c)$ is true, so $c+1=1+c$. Hence $(c+1)+1=(1+c)+1$ which is by B3 equal to $1+(c+1)$. So $\Phi(c+1)$ is true. By B6 we have that for all c with $\operatorname{Pos}(c), \Phi(c)$.
Let $\Psi(a)$ be the statement $\forall c: \operatorname{Pos}(c) \rightarrow c+a=a+c$. We have just proven that $\Psi(1)$ is true. Now assume that for $c, \operatorname{Pos}(c), \Psi(c)$ is true. So $c+(a+1)=(c+a)+1=(a+c)+1=$ $a+(c+1)=a+(1+c)=(a+1)+c$ by B3, induction hypothesis, B3, $\Phi(1)$ and B9 respectively. Hence $\Psi(a+1)$ is true. So, by B6 we have that for all a with $\operatorname{Pos}(a), \Psi(a)$ is true, which is precisely B8.

Points:

1a: 1 point.
1b: 1 point (0.5 for positive integers and 0.5 for negative integers)
1c: 1 point (0.5 for statement and 0.5 for explanation)
2a: 2 points (0.5 for proving that positive integers are arithmetically definable (or ordering of integers is arithmetically definable). 1 for the statement and 0.5 for the explanation)
2b: 1 point (0.5 for statement and 0.5 for explanation)
2c: 1 point (0.5 for statement and 0.5 for explanation)
3a: 1 point
3b: 1 point (0.5 for each induction proof)
3c: 1 point

