Hilbert's Tenth Problem Seminar Hilbert's Tenth Problem for quadratic rings

Eduardo Gomezcaña

Exercise 1. Let $\mathbb{A}(d)$ be any quadratic ring and let

$$
\omega=\left\{\begin{array}{ll}
\sqrt{d} & \text { if } d \equiv 2,3 \quad \bmod 4 \\
\frac{1+\sqrt{d}}{2} & \text { if } d \equiv 1 \quad \bmod 4
\end{array} .\right.
$$

Prove that for every element $x \in \mathbb{A}(d)$ there are $a, b \in \mathbb{Z}$ such $x=a+b \omega$.
Solution. We first need to notice that $d \equiv 0 \bmod 4$ is not possible since d is square-free. Now we take $x \in \mathbb{A}(d)$ so, for a and b rationals, $x=a+b \sqrt{d}$ and because it is an element of the quadratic ring, $2 a$ and $a^{2}-b^{2} d$ are integers.

Our first step will be to conclude that $2 b$ is also an integer. For this, we notice that $4 b^{2} d$ is also an integer, so by taking $b=p / q$ with $(p, q)=1$ and $q>1$, the above will imply that $q^{2} \mid 4 p^{2} d$ but since $\left(p^{2}, q^{2}\right)=1$ and d is squarefree, $q^{2} \mid 4$. In that case, either $q=1$ or $q=2$ and this allows us to conclude that $2 b$ is an integer as desired.

Knowing this, we define the integers $u=2 a$ and $v=2 b$. We have then $u^{2} \equiv v^{2} d \bmod 4$. We analyze now the different cases:

- If $d \equiv 2 \bmod 4$, we will have

$$
u^{2} \equiv 2 v^{2} \quad \bmod 4,
$$

and in consequence, u^{2} will be even making also u even; in that case v^{2} is also even and v in consequence. In such a case, a and b will be integers, thus

$$
\begin{aligned}
a+b \omega & =a+b \sqrt{d} \\
& =x
\end{aligned}
$$

as desired.

- If $d \equiv 3 \bmod 4$, we will have

$$
u^{2} \equiv 3 v^{2} \quad \bmod 4
$$

We need to notice that either u and v are both even or both odd; if they are odd, then

$$
u^{2} \equiv 1 \equiv v^{2} \quad \bmod 4
$$

leading to

$$
1 \equiv 3 \quad \bmod 4,
$$

a contradiction; thus both are even, again a and b are integers and we conclude the same as before.

- If $d \equiv 1 \bmod 4$, we will have

$$
u^{2} \equiv v^{2} \quad \bmod 4
$$

Again, they, u and v, are both even or both odd. In any of these cases $u-v$ is even so we take $a^{\prime}=(u-v) / 2$ and $b^{\prime}=v$, both integers, and we have

$$
\begin{aligned}
a^{\prime}+b^{\prime} \omega & =\frac{u-v}{2}+v\left(\frac{1+\sqrt{d}}{2}\right) \\
& =\frac{u}{2}+\frac{v}{2} \sqrt{d} \\
& =a+b \sqrt{d} \\
& =x
\end{aligned}
$$

Exercise 2. Let $\mathbb{Q}(\sqrt{d})$ is a quadratic number field.
(a) Show that the norm is multiplicative, i.e., if $x, y \in \mathbb{Q}(\sqrt{d})$ then we have $N(x y)=N(x) N(y)$.

Solution. It is enough to proof that $\overline{x y}=\bar{x} \bar{y}$, since if it is the case

$$
\begin{aligned}
N(x y) & =(x y) \overline{(x y)} \\
& =x y \bar{x} \bar{y} \\
& =x \bar{x} y \bar{y} \\
& =N(x) N(y) .
\end{aligned}
$$

We prove then our claim: For $x=a+b \sqrt{d}$ and $y=e+f \sqrt{d}$ and since $x y=a e+b f d+(b e+a f) \sqrt{d}$

$$
\begin{aligned}
\bar{x} \bar{y} & =(a-b \sqrt{d})(e-f \sqrt{d}) \\
& =a e+b f d-(b e+a f) \sqrt{d} \\
& =\overline{x y} .
\end{aligned}
$$

(b) Show that if $n \in \mathbb{N}$ and $x \in \mathbb{Q}(\sqrt{d})$ then $N(n x)=n^{2} N(x)$.

Solution. If $n \in \mathbb{N}$, we need to notice that $\bar{n}=n$. Thus, $N(n)=n^{2}$ and

$$
\begin{aligned}
N(n x) & =N(n) N(x) \\
& =n^{2} N(x) .
\end{aligned}
$$

(c) Show that if $d \leq 1$ then $N(x) \geq 0$ for any $x \in \mathbb{Q}(\sqrt{d})$.

Solution. Taking $x=a+b \sqrt{d}$ with a and b rationals, we can write

$$
\begin{aligned}
N(x) & =a^{2}-b^{2} d \\
& =a^{2}+b^{2}|d| \\
& \geq 0
\end{aligned}
$$

(d) Show that if $x \in \mathbb{A}(d)$ is a unit, then $N(x)= \pm 1$.

Solution. If x is a unit, then there is an element $y \in \mathbb{A}(d)$ such that $x y=1$, thus

$$
\begin{aligned}
N(x) N(y) & =N(x y) \\
& =N(1) \\
& =1
\end{aligned}
$$

But $N(x)$ and $N(y)$ are integers because x and y are elements of $\mathbb{A}(d)$ so the only possibilities are $N(x)=N(y)=-1$ or $N(x)=N(y)=1$.

Exercise 3. Let n, k and a be natural numbers with $a>1$. Show that the integral solutions to Pell's equation can be computed recursively by

$$
x_{n k}(a)+y_{n k}(a) \sqrt{a^{2}-1}=\left(x_{n}(a)+y_{n}(a) \sqrt{a^{2}-1}\right)^{k}
$$

Conclude that, writing $x_{s}=x_{s}(a)$ and $y_{s}=y_{s}(a)$, that

$$
y_{n k}=\sum_{\substack{i=1 \\ i \text { odd }}}\binom{k}{i}\left(x_{n}\right)^{k-i}\left(y_{n}\right)^{i}\left(a^{2}-1\right)^{(i-1) / 2}
$$

Solution. By definition,

$$
\begin{aligned}
x_{n k}+y_{n k} \sqrt{a^{2}-1} & =\left(a+\sqrt{a^{2}-1}\right)^{n k} \\
& =\left(\left(a+\sqrt{a^{2}-1}\right)^{n}\right)^{k} \\
& =\left(x_{n}+y_{n} \sqrt{a^{2}-1}\right)^{k}
\end{aligned}
$$

Now, by using the binomial theorem

$$
x_{n k}+y_{n k} \sqrt{a^{2}-1}=\sum_{i=0}^{k}\binom{k}{i}\left(x_{n}\right)^{k-i}\left(y_{n}\right)^{i}\left(a^{2}-1\right)^{i / 2}
$$

since $\sqrt{a^{2}-1}$ is irrational and $\left(a^{2}-1\right)^{i / 2}$ will be an integer whenever i is even,

$$
y_{n k}=\sum_{\substack{i=1 \\ i \text { odd }}}\binom{k}{i}\left(x_{n}\right)^{k-i}\left(y_{n}\right)^{i}\left(a^{2}-1\right)^{(i-1) / 2}
$$

Exercise 4. Let $\mathbb{A}(d)$ be any quadratic ring and let $y \in \mathbb{A}(d)$. Show that if $y^{2} \in \mathbb{Q}$, then $y^{2} \in \mathbb{Z}$. Furthermore, show that if $d>1, y^{2} \in \mathbb{N}$.

Solution. We write $y=a+b \sqrt{d}$, with $a, b \in \mathbb{Q}$; if y^{2} is a rational number we will have

$$
a^{2}+b^{2} d+2 a b \sqrt{d} \in \mathbb{Q}
$$

Thus $a=0$ or $b=0$. In that case,

$$
y^{2}=-a^{2}+b^{2} d=-N(y)
$$

or

$$
y^{2}=a^{2}-b^{2} d=N(y)
$$

Since y is an element of the quadratic ring, $N(y)$ is an integer so in either case, we have to conclude that $y^{2} \in \mathbb{Z}$. In particular, if $d>1$, we have $y \in \mathbb{R}$ and thus $y^{2} \geq 0$; we have then $y^{2} \in \mathbb{N}$.

Exercise 5. Let $\mathbb{A}(d)$ be any imaginary quadratic ring.
(a) Show that the only possible units are

$$
\pm 1, \pm i, \frac{ \pm 1 \pm i \sqrt{3}}{2}
$$

Solution. Since the ring is imaginary, for any element $u, N(u) \geq 0$ and thus, u is a unit if and only if $N(u)=1$. Let a and b be integers such that $u=a+b \omega$; if $b=0, u$ is a unit if and only if $u=1$ or $u=-1$. With this, we will b different than 0 .
Allow $d<-4$, then

$$
N(u)=a^{2}+b^{2}|d|
$$

or

$$
N(u)=\frac{(2 a+b)^{2}}{4}+\frac{b^{2}}{4}|d| .
$$

In either case, because $b^{2} \geq 1$, the norm $N(u)>1$. We need to conclude that an element u in the quadratic ring with $b \neq 0$ cannot be a unit.
We restrict, then, our attention to the cases $d=-1, d=-2$ and $d=-3$ (excluding $d=-4$ because it is divided by a perfect square)

- When $d=-1, N(u)=a^{2}+b^{2}$, so if we assume u a unit, we have

$$
\begin{aligned}
1 & =a^{2}+b^{2} \\
& \geq a^{2}+1
\end{aligned}
$$

Thus $a=0, b^{2}=1$ and in consequence $u= \pm \sqrt{-1}$.

- When $d=-2$,

$$
\begin{aligned}
N(u) & =a^{2}+2 b^{2} \\
& \geq a^{2}+2 \\
& >1
\end{aligned}
$$

So there are no units with $b \neq 0$.

- When $d=-3$,

$$
\begin{aligned}
1 & =N(u) \\
& =\frac{(2 a+b)^{2}}{4}+3 \frac{b^{2}}{4} .
\end{aligned}
$$

So

$$
(2 a+b)^{2}+3 b^{2}=4
$$

we need to notice that $b^{2}>1$ is a contradiction with the above, we conclude $b^{2} \leq 1$, but b is already not zero so we will have $b^{2}=1$; in that case $(2 a+b)^{2}=1$ and this will yield four possibilities: $a=0$ and $b=1, a=0$ and $b=-1, a=1$ and $b=-1$ or $a=-1$ and $b=1$. In turn

$$
u=\frac{ \pm 1 \pm \sqrt{-3}}{2}
$$

With the cases exhausted, the proof is complete.
(b) Use this to prove that the fact that $5 h+2$ is a unit, for $h \in \mathbb{A}(d)$, is contradictory.

Solution. We notice first that the case where $\pm i$ are possible as units happens when $d=-1$, in that case $\omega=\sqrt{d}$ so we will have $\pm \omega$ as these units. Also, if

$$
\frac{ \pm 1 \pm \sqrt{-3}}{2}
$$

happen, we will have $d=-3$, so $\omega=(1+\sqrt{-3}) / 2$; in that case the possible units are $\omega,-\omega, 1-\omega$ and $-1+\omega$. In that light, if $e+f \omega$ is a unit of the quadratic ring $\mathbb{A}(d)$ for any square-free integer d, then $e=1, e=-1$ or $e=0$.
Now, if $h=a+b \omega$ is any element of the quadratic ring, with a and b integers,

$$
5 h+2=(5 a+2)+5 b \omega
$$

but $5 a+2 \neq 1,5 a+2 \neq-1$, and $5 a+2 \neq 0$, thus $5 h+2$ is not a unit of the quadratic ring. Since h was taken arbitrary, $5 h+2$ being a unit is contradictory.

