Hilbert’s Tenth Problem Seminar
Hilbert’s Tenth Problem for quadratic rings

Eduardo Gomezcana

Exercise 1. Let A(d) be any quadratic ring and let

Vd  ifd=2,3 mod4
w = .
Lyd i d=1 mod 4

Prove that for every element x € A(d) there are a,b € Z such = a + bw.

Solution. We first need to notice that d = 0 mod 4 is not possible since d is
square-free. Now we take x € A(d) so, for a and b rationals, v = a + bv/d and
because it is an element of the quadratic ring, 2a and a® — b?d are integers.

Our first step will be to conclude that 2b is also an integer. For this, we
notice that 4b%d is also an integer, so by taking b = p/q with (p,q) = 1 and
q > 1, the above will imply that ¢?|4p?d but since (p?,q?) = 1 and d is square-
free, ¢|4. In that case, either ¢ = 1 or ¢ = 2 and this allows us to conclude that
2b is an integer as desired.

Knowing this, we define the integers v = 2a and v = 2b. We have then

u? = v2d mod 4. We analyze now the different cases:

e If d =2 mod 4, we will have
u? = 20 mod 4,
and in consequence, u? will be even making also u even; in that case v? is

also even and v in consequence. In such a case, a and b will be integers,
thus

a+bw=a-+bVd

=z
as desired.
e If d =3 mod 4, we will have
u? = 30v® mod 4.
We need to notice that either w and v are both even or both odd; if they

are odd, then

2

U 1=v?> mod 4

leading to
1=3 mod 4,

a contradiction; thus both are even, again a and b are integers and we
conclude the same as before.



e If d =1 mod 4, we will have

w? =02 mod 4.

Again, they, v and v, are both even or both odd. In any of these cases
u — v is even so we take a’ = (u — v)/2 and b’ = v, both integers, and we

have
a’+b’w=H+v<1+\/g>

Exercise 2. Let Q(v/d) is a quadratic number field.

(a) Show that the norm is multiplicative, i.e., if 2,y € Q(v/d) then we have
N(zy) = N(z)N(y)-

Solution. It is enough to proof that Ty = Zy, since if it is the case

N(zy) = (zy)(zy)
= TYTyY

= TTYY

= N(z)N(y).

We prove then our claim: For z = a + bv/d and y = e + f/d and since
xy = ae + bfd + (be + af)Vd

zj = (a — bVd)(e — fVd)
=ae+bfd— (be+af)Vd

Ty.
O
(b) Show that if n € N and 2 € Q(v/d) then N(nz) = n?N(z).
Solution. If n € N, we need to notice that 7 = n. Thus, N(n) = n? and
N(nz) = N(n)N(x)
=n?N(z).
O

(¢) Show that if d < 1 then N(z) > 0 for any = € Q(v/d).



Solution. Taking & = a + bv/d with a and b rationals, we can write

(d) Show that if x € A(d) is a unit, then N(z) = +1.

Solution. If x is a unit, then there is an element y € A(d) such that zy = 1,
thus

But N(z) and N(y) are integers because = and y are elements of A(d) so
the only possibilities are N(z) = N(y) = —1 or N(z) = N(y) = 1. O

Exercise 3. Let n,k and a be natural numbers with ¢ > 1. Show that the
integral solutions to Pell’s equation can be computed recursively by

Tnk(a) + Ynr(a)Va? — 1 = (azn(a) + yn(a)Va? — 1)k.

Conclude that, writing =, = zs(a) and ys = ys(a), that

Ynk = Z (f) (mn)k—i(yn)i(a2 _ 1)(1‘—1)/2.

i=1
i odd

Solution. By definition,

Tk +ynk\/aZi_1: (a—|— m)nk
— (a+ V-1’
= (0w 1)

Now, by using the binomial theorem
et /@ =1 =3 (8 @) ) = 1)
i=0

since Va2 — 1 is irrational and (a® — 1)*/? will be an integer whenever i is even,

= 3 (5 i - 1y

=1
i odd



Exercise 4. Let A(d) be any quadratic ring and let y € A(d). Show that if
y? € Q, then y? € Z. Furthermore, show that if d > 1, y?> € N.

Solution. We write y = a + bV/d, with a,b € Q; if y? is a rational number we
will have
a® + b2d + 2abVd € Q.

Thus a = 0 or b = 0. In that case,
y' = —a? +bd = —N(y)

or
y? =a® —b*d = N(y).

Since y is an element of the quadratic ring, N(y) is an integer so in either case,

we have to conclude that y? € Z. In particular, if d > 1, we have y € R and

thus y? > 0; we have then y? € N.
O

Exercise 5. Let A(d) be any imaginary quadratic ring.

(a) Show that the only possible units are

1,4, TIEVS iv3

Solution. Since the ring is imaginary, for any element uw, N(u) > 0 and
thus, u is a unit if and only if N(u) = 1. Let a and b be integers such that
u = a+bw; if b =0, uis a unit if and only if u =1 or u = —1. With this,
we will b different than 0.
Allow d < —4, then
N(u) = a® + b?|d|

or
(2a + b)?

4

In either case, because b> > 1, the norm N(u) > 1. We need to conclude
that an element v in the quadratic ring with b # 0 cannot be a unit.

b2
N(u) = + Z|d|

We restrict, then, our attention to the cases d = —1, d = —2 and d = —3
(excluding d = —4 because it is divided by a perfect square)

e When d = —1, N(u) = a® + b2, so if we assume u a unit, we have
1=a%+0b?
>a?+ 1.
Thus a = 0, b2 = 1 and in consequence u = ++/—1.
e When d = -2,
N(u) = a® + 20°
>a? 42
> 1.

So there are no units with b # 0.



e When d = -3,

1=N(u)
~ (2a+0b)? b?
= 1 —‘r34.

So
(2a + b)* 4 3b° = 4;

we need to notice that b > 1 is a contradiction with the above, we
conclude b < 1, but b is already not zero so we will have b = 1; in
that case (2a + b)? = 1 and this will yield four possibilities: a = 0 and
b=1l,a=0andb=-1,a=1landb=—-lora=—-1land b=1. In

turn
+1++/-3
U= —">-":
2
With the cases exhausted, the proof is complete.

O

Use this to prove that the fact that 5h + 2 is a unit, for h € A(d), is
contradictory.

Solution. We notice first that the case where +i are possible as units hap-

pens when d = —1, in that case w = v/d so we will have +w as these units.
Also, if
+1++-3
2

happen, we will have d = —3, sow = (1 + \/TS) /2; in that case the possible
units are w, —w,1 —w and —1 + w. In that light, if e + fw is a unit of the
quadratic ring A(d) for any square-free integer d, then e = 1, e = —1 or
e=0.
Now, if h = a + bw is any element of the quadratic ring, with ¢ and b
integers,

5h+ 2 = (5a + 2) + 5bw

but ba 4+ 2 # 1, ba + 2 # —1, and 5a + 2 # 0, thus 5h + 2 is not a unit
of the quadratic ring. Since h was taken arbitrary, 5h 4+ 2 being a unit is
contradictory. 0



