
Hilbert’s Tenth Problem Seminar
Hilbert’s Tenth Problem for quadratic rings

Eduardo Gomezcaña

Exercise 1. Let A(d) be any quadratic ring and let

ω =

{√
d if d ≡ 2, 3 mod 4

1+
√
d

2 if d ≡ 1 mod 4
.

Prove that for every element x ∈ A(d) there are a, b ∈ Z such x = a + bω.

Solution. We first need to notice that d ≡ 0 mod 4 is not possible since d is
square-free. Now we take x ∈ A(d) so, for a and b rationals, x = a + b

√
d and

because it is an element of the quadratic ring, 2a and a2 − b2d are integers.
Our first step will be to conclude that 2b is also an integer. For this, we

notice that 4b2d is also an integer, so by taking b = p/q with (p, q) = 1 and
q > 1, the above will imply that q2|4p2d but since (p2, q2) = 1 and d is square-
free, q2|4. In that case, either q = 1 or q = 2 and this allows us to conclude that
2b is an integer as desired.

Knowing this, we define the integers u = 2a and v = 2b. We have then
u2 ≡ v2d mod 4. We analyze now the different cases:

• If d ≡ 2 mod 4, we will have

u2 ≡ 2v2 mod 4,

and in consequence, u2 will be even making also u even; in that case v2 is
also even and v in consequence. In such a case, a and b will be integers,
thus

a + bω = a + b
√
d

= x

as desired.

• If d ≡ 3 mod 4, we will have

u2 ≡ 3v2 mod 4.

We need to notice that either u and v are both even or both odd; if they
are odd, then

u2 ≡ 1 ≡ v2 mod 4

leading to
1 ≡ 3 mod 4,

a contradiction; thus both are even, again a and b are integers and we
conclude the same as before.
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• If d ≡ 1 mod 4, we will have

u2 ≡ v2 mod 4.

Again, they, u and v, are both even or both odd. In any of these cases
u− v is even so we take a′ = (u− v)/2 and b′ = v, both integers, and we
have

a′ + b′ω =
u− v

2
+ v

(
1 +
√
d

2

)
=

u

2
+

v

2

√
d

= a + b
√
d

= x.

Exercise 2. Let Q(
√
d) is a quadratic number field.

(a) Show that the norm is multiplicative, i.e., if x, y ∈ Q(
√
d) then we have

N(xy) = N(x)N(y).

Solution. It is enough to proof that xy = x̄ȳ, since if it is the case

N(xy) = (xy)(xy)

= xyx̄ȳ

= xx̄yȳ

= N(x)N(y).

We prove then our claim: For x = a + b
√
d and y = e + f

√
d and since

xy = ae + bfd + (be + af)
√
d

x̄ȳ = (a− b
√
d)(e− f

√
d)

= ae + bfd− (be + af)
√
d

= xy.

(b) Show that if n ∈ N and x ∈ Q(
√
d) then N(nx) = n2N(x).

Solution. If n ∈ N, we need to notice that n̄ = n. Thus, N(n) = n2 and

N(nx) = N(n)N(x)

= n2N(x).

(c) Show that if d ≤ 1 then N(x) ≥ 0 for any x ∈ Q(
√
d).
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Solution. Taking x = a + b
√
d with a and b rationals, we can write

N(x) = a2 − b2d

= a2 + b2|d|
≥ 0

(d) Show that if x ∈ A(d) is a unit, then N(x) = ±1.

Solution. If x is a unit, then there is an element y ∈ A(d) such that xy = 1,
thus

N(x)N(y) = N(xy)

= N(1)

= 1.

But N(x) and N(y) are integers because x and y are elements of A(d) so
the only possibilities are N(x) = N(y) = −1 or N(x) = N(y) = 1.

Exercise 3. Let n, k and a be natural numbers with a > 1. Show that the
integral solutions to Pell’s equation can be computed recursively by

xnk(a) + ynk(a)
√
a2 − 1 =

(
xn(a) + yn(a)

√
a2 − 1

)k
.

Conclude that, writing xs = xs(a) and ys = ys(a), that

ynk =
∑
i=1
i odd

(
k

i

)
(xn)k−i(yn)i(a2 − 1)(i−1)/2.

Solution. By definition,

xnk + ynk
√
a2 − 1 =

(
a +

√
a2 − 1

)nk
=
(

(a +
√
a2 − 1)n

)k
=
(
xn + yn

√
a2 − 1

)k
.

Now, by using the binomial theorem

xnk + ynk
√
a2 − 1 =

k∑
i=0

(
k

i

)
(xn)k−i(yn)i(a2 − 1)i/2;

since
√
a2 − 1 is irrational and (a2− 1)i/2 will be an integer whenever i is even,

ynk =
∑
i=1
i odd

(
k

i

)
(xn)k−i(yn)i(a2 − 1)(i−1)/2.
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Exercise 4. Let A(d) be any quadratic ring and let y ∈ A(d). Show that if
y2 ∈ Q, then y2 ∈ Z. Furthermore, show that if d > 1, y2 ∈ N.

Solution. We write y = a + b
√
d, with a, b ∈ Q; if y2 is a rational number we

will have
a2 + b2d + 2ab

√
d ∈ Q.

Thus a = 0 or b = 0. In that case,

y2 = −a2 + b2d = −N(y)

or
y2 = a2 − b2d = N(y).

Since y is an element of the quadratic ring, N(y) is an integer so in either case,
we have to conclude that y2 ∈ Z. In particular, if d > 1, we have y ∈ R and
thus y2 ≥ 0; we have then y2 ∈ N.

Exercise 5. Let A(d) be any imaginary quadratic ring.

(a) Show that the only possible units are

±1,±i, ±1± i
√

3

2
.

Solution. Since the ring is imaginary, for any element u, N(u) ≥ 0 and
thus, u is a unit if and only if N(u) = 1. Let a and b be integers such that
u = a + bω; if b = 0, u is a unit if and only if u = 1 or u = −1. With this,
we will b different than 0.

Allow d < −4, then
N(u) = a2 + b2|d|

or

N(u) =
(2a + b)2

4
+

b2

4
|d|.

In either case, because b2 ≥ 1, the norm N(u) > 1. We need to conclude
that an element u in the quadratic ring with b 6= 0 cannot be a unit.

We restrict, then, our attention to the cases d = −1, d = −2 and d = −3
(excluding d = −4 because it is divided by a perfect square)

• When d = −1, N(u) = a2 + b2, so if we assume u a unit, we have

1 = a2 + b2

≥ a2 + 1.

Thus a = 0, b2 = 1 and in consequence u = ±
√
−1.

• When d = −2,

N(u) = a2 + 2b2

≥ a2 + 2

> 1.

So there are no units with b 6= 0.
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• When d = −3,

1 = N(u)

=
(2a + b)2

4
+ 3

b2

4
.

So
(2a + b)2 + 3b2 = 4;

we need to notice that b2 > 1 is a contradiction with the above, we
conclude b2 ≤ 1, but b is already not zero so we will have b2 = 1; in
that case (2a+ b)2 = 1 and this will yield four possibilities: a = 0 and
b = 1, a = 0 and b = −1, a = 1 and b = −1 or a = −1 and b = 1. In
turn

u =
±1±

√
−3

2
.

With the cases exhausted, the proof is complete.

(b) Use this to prove that the fact that 5h + 2 is a unit, for h ∈ A(d), is
contradictory.

Solution. We notice first that the case where ±i are possible as units hap-
pens when d = −1, in that case ω =

√
d so we will have ±ω as these units.

Also, if
±1±

√
−3

2

happen, we will have d = −3, so ω =
(
1 +
√
−3
)
/2; in that case the possible

units are ω, −ω,1− ω and −1 + ω. In that light, if e + fω is a unit of the
quadratic ring A(d) for any square-free integer d, then e = 1, e = −1 or
e = 0.

Now, if h = a + bω is any element of the quadratic ring, with a and b
integers,

5h + 2 = (5a + 2) + 5bω

but 5a + 2 6= 1, 5a + 2 6= −1, and 5a + 2 6= 0, thus 5h + 2 is not a unit
of the quadratic ring. Since h was taken arbitrary, 5h + 2 being a unit is
contradictory.
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