Solutions to the homework

Joep Horbach

November 18th 2013

Exercise 1

Let $n>1$, let $u, x, z \in \mathbb{Z}$ and suppose the following conditions hold:

$$
\begin{gathered}
n z+n x-\left.1\right|^{n} n^{2} u-(n x-1)^{2} \\
2 n z+\left.1\right|^{n} n x-1 \\
2 n z-\left.1\right|^{n} n x-1 \\
2 n^{2} u+\left.1\right|^{n} n x-1
\end{gathered}
$$

We want to prove that $u=z^{2}$.
a) Using the first condition, prove that $n z+n x-1 \mid n^{2} u-n^{2} z^{2}$.

Solution: If $\left.x\right|^{n} y$ then there exist q and f such that $y n^{f}=x q$. If x and n are relatively prime, this gives us that $n^{f} \mid q$ must hold. Define $k:=\frac{q}{n^{f}} \in \mathbb{Z}$, then $y=x k$ and so $x \mid y$. Because $n z+n x-1$ is obviously relatively prime to n, we get $n z+n x-1 \mid n^{2} u-(n x-1)^{2}$. We also know $n z+n x-1 \mid(n z+n x-1)(n z-(n x-1))$, so $n z+n x-1 \mid n^{2} z^{2}-(n x-1)^{2}$, so $n z+n x-1 \mid n^{2} u-(n x-1)^{2}-\left(n^{2} z^{2}-(n x-1)^{2}\right)$ and so $n z+n x-1 \mid n^{2} u-n^{2} z^{2}$.

Assume $u \neq z^{2}$
b) Prove that $|n x-1|-n|z| \leq n^{2}|u|+n^{2} z^{2}$.

Solution: Since $n>1$ and $u \neq z^{2}$, we know $n^{2} u-n^{2} z^{2} \neq 0$. Because $n z+n x-1 \mid n^{2} u-n^{2} z^{2}$ it now follows that $|n z+n x-1| \leq\left|n^{2} u-n^{2} z^{2}\right|$. So we get $|n x-1|-n|z|=|n x-1|-|-n z| \leq$ $|n z+n x-1| \leq\left|n^{2} u-n^{2} z^{2}\right| \leq\left|n^{2} u\right|+\left|n^{2} z^{2}\right|=n^{2}|u|+n^{2} z^{2}$.
c) Using the second and third condition, prove that $(2 n z+1)(2 n z-1) \mid n x-1$ and therefore that $4 n^{2} z^{2}-1 \leq|n x-1|$.

Solution: Again because $2 n z+1$ and $2 n z-1$ are both relatively prime to n, it follows from the second and third condition that $2 n z+1 \mid n x-1$ and $2 n z-1 \mid n x-1.2 n z+1$ and
$2 n z-1$ are both odd and differ only by 2 so must be relatively prime to each other. Both divide $n x-1$ so we get $(2 n z+1)(2 n z-1) \mid n x-1$. $n>1$ and $x \in \mathbb{Z}$ so $n x-1 \neq 0$. Therefore we get $|(2 n z+1)(2 n z-1)| \leq|n x-1|$ and so $4 n^{2} z^{2}-1 \leq\left|4 n^{2} z^{2}-1\right| \leq|n x-1|$.
d) Using the fourth condition, prove that $2 n^{2}|u|-1 \leq|n x-1|$ and combining this with b) and c), show that $(n|z|)^{2}-n|z|-1 \leq 0$.

Solution: $2 n^{2} u+1$ is relatively prime to n, so from the fourth condition it follows that $2 n^{2} u+1 \mid n x-1$. Like before, $n x-1 \neq 0$, so $\left|2 n^{2} u+1\right| \leq|n x-1|$ and so $2 n^{2}|u|-1=$ $\left|2 n^{2} u\right|-|-1| \leq\left|2 n^{2} u+1\right| \leq|n x-1|$. Because $4 n^{2} z^{2}-1 \leq|n x-1|$ and $2 n^{2}|u|-1 \leq|n x-1|$, we also have $\frac{1}{2}\left(4 n^{2} z^{2}-1+2 n^{2}|u|-1\right)=2 n^{2} z^{2}+n^{2}|u|-1 \leq|n x-1|$. We have $|n x-1|-n|z| \leq$ $n^{2}|u|+n^{2} z^{2}$, so combining these two gives us $2 n^{2} z^{2}+n^{2}|u|-1-n|z| \leq n^{2}|u|+n^{2} z^{2}$ which is easily reduced to $(n|z|)^{2}-n|z|-1 \leq 0$.
e) Conclude that $u=z^{2}$ must hold.

Solution: Assume $z=0$, then from $|n x-1|-n|z| \leq n^{2}|u|+n^{2} z^{2}$ it follows that $|n x-1| \leq$ $n^{2}|u|$. We also have $2 n^{2}|u|-1 \leq|n x-1|$, so we get $2 n^{2}|u|-1 \leq n^{2}|u|$, so $n^{2}|u| \leq 1$, but because $n>1$, we must have $u=0$, which contradicts $u \neq z^{2}$. Assume $z \neq 0$, then $n|z|$ is at least 2 , because $n>1$, but then $(n|z|)^{2}-n|z|-1 \leq 0$ can not possibly hold. We conclude that our assumption that $u \neq z^{2}$ was wrong and that $u=z^{2}$ must hold.

Exercise 2

Prove that for any integer $d \neq 0$, there exists an integer x such that $\left.x\right|^{n} 1$ and $\left.d\right|^{n} n x-1$. Hint: Split d into two parts and consider the Euler-Phi function on one of these parts.

Solution: Write $d=a b$ where a only contains prime factors that are also in n while b is relatively prime to n. Define $x=n^{\phi(b)-1}$. Now $\left.x\right|^{n} 1$ because x is a power of n so the first part holds. Because a only contains prime factors that are also in n, a will divide some power of n and so we can find $f, q \in \mathbb{Z}$ such that $q a=n^{f}$. Also note that $n^{\phi(b)} \equiv 1 \bmod b$ because b and n are relatively prime, so $n x-1=n^{\phi(b)}-1 \equiv 0 \bmod b$ and so we can write $n x-1=k b$ for some $k \in \mathbb{Z}$. Combining these things gives us $(q k) d=(n x-1) n^{f}$ and so $\left.d\right|^{n} n x-1$.

Grading

Exercise 1
a) $\frac{1}{2}$ points for showing $n z+n x-1 \left\lvert\, n^{2} u-(n x-1)^{2} \cdot \frac{1}{2}\right.$ points for finishing the proof.
b) $\frac{1}{2}$ points for showing $|n z+n x-1| \leq\left|n^{2} u-n^{2} z\right| \cdot \frac{1}{2}$ points for finishing the proof.
c) $\frac{1}{2}$ points for showing $2 n z+1 \mid n x-1$ and $2 n z-1 \mid n x-1$. $\frac{1}{2}$ points for showing $(2 n z+$ 1) $(2 n z-1) \mid n x-1$. $\frac{1}{2}$ points for showing $4 n^{2} z^{2}-1 \leq|n x-1|$
d) $\frac{3}{4}$ points for showing $2 n^{2}|u|-1 \leq|n x-1|$ and $\frac{5}{4}$ points for showing $(n|z|)^{2}-n|z|-1 \leq 0$.
e) 1 point for correctly finding a contradiction when $z=0.1$ point for correctly finding a contradiction when $z \neq 0$.

Exercise 2
$\frac{1}{2}$ points for correctly splitting d into two components. 1 point for correctly defining x. $\frac{1}{2}$ points for showing $\left.x\right|^{n} 1$ holds for this $x . \frac{1}{2}$ points for showing $\left.d\right|^{n} n x-1$ holds.

Note: If the same mistake is made twice, it will only be counted as wrong the first time.

