Solutions to the homework

Joep Horbach

November 18th 2013

Exercise 1

Let n > 1, let $u, x, z \in \mathbb{Z}$ and suppose the following conditions hold:

$$nz + nx - 1|^{n}n^{2}u - (nx - 1)^{2}$$
$$2nz + 1|^{n}nx - 1$$
$$2nz - 1|^{n}nx - 1$$
$$2n^{2}u + 1|^{n}nx - 1$$

We want to prove that $u = z^2$.

a) Using the first condition, prove that $nz + nx - 1|n^2u - n^2z^2$.

Solution: If $x|^n y$ then there exist q and f such that $yn^f = xq$. If x and n are relatively prime, this gives us that $n^f|q$ must hold. Define $k := \frac{q}{n^f} \in \mathbb{Z}$, then y = xk and so x|y. Because nz + nx - 1 is obviously relatively prime to n, we get $nz + nx - 1|n^2u - (nx - 1)^2$. We also know nz + nx - 1|(nz + nx - 1)(nz - (nx - 1))), so $nz + nx - 1|n^2z^2 - (nx - 1)^2$, so $nz + nx - 1|n^2u - (nx - 1)^2 - (n^2z^2 - (nx - 1)^2)$ and so $nz + nx - 1|n^2u - n^2z^2$.

Assume $u \neq z^2$ b) Prove that $|nx - 1| - n|z| \le n^2 |u| + n^2 z^2$.

Solution: Since n > 1 and $u \neq z^2$, we know $n^2u - n^2z^2 \neq 0$. Because $nz + nx - 1|n^2u - n^2z^2$ it now follows that $|nz + nx - 1| \le |n^2u - n^2z^2|$. So we get $|nx - 1| - n|z| = |nx - 1| - |-nz| \le |nz + nx - 1| \le |n^2u - n^2z^2| \le |n^2u| + |n^2z^2| = n^2|u| + n^2z^2$.

c) Using the second and third condition, prove that (2nz + 1)(2nz - 1)|nx - 1 and therefore that $4n^2z^2 - 1 \le |nx - 1|$.

Solution: Again because 2nz + 1 and 2nz - 1 are both relatively prime to n, it follows from the second and third condition that 2nz + 1|nx - 1 and 2nz - 1|nx - 1. 2nz + 1 and

2nz - 1 are both odd and differ only by 2 so must be relatively prime to each other. Both divide nx - 1 so we get (2nz + 1)(2nz - 1)|nx - 1. n > 1 and $x \in \mathbb{Z}$ so $nx - 1 \neq 0$. Therefore we get $|(2nz + 1)(2nz - 1)| \leq |nx - 1|$ and so $4n^2z^2 - 1 \leq |4n^2z^2 - 1| \leq |nx - 1|$.

d) Using the fourth condition, prove that $2n^2|u| - 1 \le |nx - 1|$ and combining this with b) and c), show that $(n|z|)^2 - n|z| - 1 \le 0$.

Solution: $2n^2u + 1$ is relatively prime to n, so from the fourth condition it follows that $2n^2u + 1|nx - 1$. Like before, $nx - 1 \neq 0$, so $|2n^2u + 1| \leq |nx - 1|$ and so $2n^2|u| - 1 = |2n^2u| - |-1| \leq |2n^2u + 1| \leq |nx - 1|$. Because $4n^2z^2 - 1 \leq |nx - 1|$ and $2n^2|u| - 1 \leq |nx - 1|$, we also have $\frac{1}{2}(4n^2z^2 - 1 + 2n^2|u| - 1) = 2n^2z^2 + n^2|u| - 1 \leq |nx - 1|$. We have $|nx - 1| - n|z| \leq n^2|u| + n^2z^2$, so combining these two gives us $2n^2z^2 + n^2|u| - 1 - n|z| \leq n^2|u| + n^2z^2$ which is easily reduced to $(n|z|)^2 - n|z| - 1 \leq 0$.

e) Conclude that $u = z^2$ must hold.

Solution: Assume z = 0, then from $|nx - 1| - n|z| \le n^2 |u| + n^2 z^2$ it follows that $|nx - 1| \le n^2 |u|$. We also have $2n^2 |u| - 1 \le |nx - 1|$, so we get $2n^2 |u| - 1 \le n^2 |u|$, so $n^2 |u| \le 1$, but because n > 1, we must have u = 0, which contradicts $u \ne z^2$. Assume $z \ne 0$, then n|z| is at least 2, because n > 1, but then $(n|z|)^2 - n|z| - 1 \le 0$ can not possibly hold. We conclude that our assumption that $u \ne z^2$ was wrong and that $u = z^2$ must hold.

Exercise 2

Prove that for any integer $d \neq 0$, there exists an integer x such that $x|^n 1$ and $d|^n nx - 1$. Hint: Split d into two parts and consider the Euler-Phi function on one of these parts.

Solution: Write d = ab where a only contains prime factors that are also in n while b is relatively prime to n. Define $x = n^{\phi(b)-1}$. Now $x|^n 1$ because x is a power of n so the first part holds. Because a only contains prime factors that are also in n, a will divide some power of n and so we can find $f, q \in \mathbb{Z}$ such that $qa = n^f$. Also note that $n^{\phi(b)} \equiv 1 \mod b$ because b and n are relatively prime, so $nx - 1 = n^{\phi(b)} - 1 \equiv 0 \mod b$ and so we can write nx - 1 = kb for some $k \in \mathbb{Z}$. Combining these things gives us $(qk)d = (nx - 1)n^f$ and so $d|^nnx - 1$.

Grading

Exercise 1

- a) $\frac{1}{2}$ points for showing $nz + nx 1|n^2u (nx 1)^2$. $\frac{1}{2}$ points for finishing the proof.
- b) $\frac{1}{2}$ points for showing $|nz + nx 1| \le |n^2u n^2z|$. $\frac{1}{2}$ points for finishing the proof.

c) $\frac{1}{2}$ points for showing 2nz + 1|nx - 1 and 2nz - 1|nx - 1. $\frac{1}{2}$ points for showing (2nz + 1)(2nz - 1)|nx - 1. $\frac{1}{2}$ points for showing $4n^2z^2 - 1 \le |nx - 1|$

d) $\frac{3}{4}$ points for showing $2n^2|u|-1 \le |nx-1|$ and $\frac{5}{4}$ points for showing $(n|z|)^2 - n|z|-1 \le 0$.

e) 1 point for correctly finding a contradiction when z = 0. 1 point for correctly finding a contradiction when $z \neq 0$.

Exercise 2

 $\frac{1}{2}$ points for correctly splitting d into two components. 1 point for correctly defining x. $\frac{1}{2}$ points for showing $x|^n 1$ holds for this x. $\frac{1}{2}$ points for showing $d|^n nx - 1$ holds.

Note: If the same mistake is made twice, it will only be counted as wrong the first time.