exercise 1. Let (R, <, S) be an o-minimal structure. Prove:

- 1. For every definable subset $X \subseteq R$, if $X \neq \emptyset$ and $X \neq R$ then either X has an upper (resp. lower) bound in R, or $R \setminus X$ has an upper (resp. lower) bound in R.
- 2. For every $X \subseteq Y \subseteq R$ with X and Y definable, if X is dense in Y then X is open in Y. (A set X is dense in Y iff for every nonempty set U open in $Y, U \cap X \neq \emptyset$.)

exercise 2. Let (R, <) be a dense linear order without end points, and let S be a structure on R containing < as well as all intervals and singletons. Assume:

- 1. For every non-empty definable subset $A \subseteq R$, $\inf(A)$ and $\sup(A)$ exist in $R \cup \{-\infty, +\infty\}$.
- 2. For every definable subset $A \subseteq R$, if $A \neq \emptyset$ and $A \neq R$ then either A has an upper (resp. lower) bound in R or $R \setminus A$ has an upper (resp. lower) bound in R.
- 3. For every infinite definable subset $A \subseteq R$, the interior int(A) is non-empty.
- 4. For every two definable subsets $A, B \subseteq R$, if A is dense in B, then A is open in B.

Prove that (R, <, S) is o-minimal.

(Hint: prove for every definable set $A \subseteq R$ that the boundary $bd(A) = cl(A) \setminus int(A)$ is finite. Find $-\infty = b_0 < b_1 < \ldots < b_k < b_{k+1} = +\infty$ such that for every *i*, either $(b_i, b_{i+1}) \subseteq A$ or $(b_i, b_{i+1}) \subseteq R \setminus A$.)