Seminar O-minimal structures- Homework

Pol van Hoften 4001613

January 18, 2015

Exercise 1(3 points) Show that the model-theoretic structure $(\mathbb{R}, <, 0, 1, 2)$ the definable set $\{(x, y) : 0 < x < 1, 0 < y < 2\} \cup \{(1, 2)\}$ is definable connected but not definably path connected (as defined on page 100).

Exercise 2 (3 points) Show that definable path connectedness is preserved under definable homeomorphisms. That is, let $X \subset \mathbb{R}^m$ be definable and definably path connected, and let $f : X \to Y \subset \mathbb{R}^m$ be a definable homeomorphism, show that Y is definably path connected.

Exercise 3 (4 points) Let X be a definable set that is definably connected. Show that we can write X as a union of cells C_1, \dots, C_k , where for each i < k, either C_i intersects the closure of C_{i+1} ir C_{i+1} intersects the closure of C_i . (Hint: Look at Exercise 5 on page 58)