Tame Topology and O-minimal Structures, Smoothness and triangulation, homework set Due, 06-02-2014

Niels Voorneveld (n.f.w.voorneveld@students.uu.nl)

For these questions, we assume an o-minimal structure (R, <, S) extending an ordered field $(R, <, 0, 1, +, -, \cdot)$.

1 C^k functions

Let $f = (f_1, f_2, ..., f_n) : U \to \mathbb{R}^n$ be a definable map on an open set $U \subset \mathbb{R}^m$. We give an inductive definition for f to be \mathbb{C}^k , where k is a positive integer: f is \mathbb{C}^1 if it satisfies the original definition. f is \mathbb{C}^{k+1} if f is \mathbb{C}^1 and $df : U \to \mathbb{R}^{nm}$ is \mathbb{C}^k .

a) Show that for an open $U \subset \mathbb{R}^m$, the inclusion map $U \to \mathbb{R}^m$ is \mathbb{C}^k for all k > 0. b) Assume $f: U \to \mathbb{R}^n$ ($U \subset \mathbb{R}^m$ open and f is \mathbb{C}^k) and $g: V \to \mathbb{R}^p$ ($V \subset \mathbb{R}^n$ open and g is \mathbb{C}^k). Proof that $g \circ f: W \to \mathbb{R}^p$ is \mathbb{C}^k for any set $W \subset f^{-1}(V)$ open in \mathbb{R}^m . c) For $f: A \to \mathbb{R}$ with $A \subset \mathbb{R}$ and k > 0. Proof that there is decomposition of \mathbb{R} partitioning A such that on all open cells \mathbb{C} in the partition, $f|_{\mathbb{C}}$ is \mathbb{C}^k .

2 Good linear spaces

Let $A \subset \mathbb{R}^m$ definable with $dim(A) \leq k < m$. Show that there is a linear space L in \mathbb{R}^m of dimension (m - k) such that for all $v \in \mathbb{R}^m$ we have that with $L_v := \{v + x : x \in L\}$, the intersection $L_v \cap A$ is finite.

Hint: use the good directions lemma (7.4.2)

3 Open faces of complexes

Let K be a complex of \mathbb{R}^m , in the ordered field $(\mathbb{R}, <, 0, 1, +, -, \cdot)$.

a) Let $\sigma \epsilon K$ with $dim(\sigma) = dim(|K|)$. Show that σ is open in |K|.

Note: You may assume that the dimension of |K| is the maximal dimension of its elements. b) Give an example of a complex K with an element $\sigma \epsilon K$ for which σ is not open in K.