Hand-in Exercise 2 - O-minimal Structures

$3~{\rm oktober}~2014$

Problem 1.

Let F denote an ordered field and let R be an nontrivial ordered F-linear space as defined in (7.2). Construe R as a model-theoretic structure for the language $L_F = \{<, 0, -, +\} \cup \{\lambda : \lambda \in F\}$ of ordered abelian groups augmented by a unary function symbol λ for each $\lambda \in F$, to be interpreted as multiplication by the scalar λ . Prove:

- 1. The subsets of \mathbb{R}^m definable in the L_F -structure \mathbb{R} using constants are exactly the semilinear sets in \mathbb{R}^m .
- 2. The maps $R \to R$ that are additive and definable using constants are exactly the scalar multiplications by elements of F. A map f is additive iff

 $\forall r_1, r_2 \in R : f(r_1 + r_2) = f(r_1) + f(r_2).$