Handout Seminar Presentation - Monotonicity theorem

Pol van Hoften 4001613

November 5, 2014

1 Monotonicity Theorem

Theorem 1.1 (Monotonicity). Let $f : I \to R$ be a definable function. Then are intervals $I = I_0 \cup \cdots \cup I_k$ such that on every sub-interval I_j the function $F|I_j$ is either constant, or strictly monotone and continuous.

Proof. Assuming the following 3 lemma's, we will derive the theorem, let I denote an interval (a, b).

Lemma 1.1. Let $f : I \to R$ be a definable function, then there is a sub-interval of I on which F is constant or injective.

Lemma 1.2. Let $f : I \to R$ be a definable function, if f is injective, then f is strictly monotone on a sub-interval of I.

Lemma 1.3. Let $f: I \to R$ be a definable function, if f is strictly monotone, then f is continuous on a sub-interval of I.

1.1 Proof of Lemma 2

$$\Phi_{++}(x) = \exists c_1, \exists c_2 \in I \bigg[c_1 < x < c_2 \& \forall y \in (c_1, x) : f(y) > f(x) \\ \& \forall y \in (x, x_2) : f(y) > f(x) \bigg],$$

$$\Phi_{--}(x) = \exists c_1, \exists c_2 \in I \bigg[c_1 < x < c_2 \& \forall y \in (c_1, x) : f(y) < f(x) \\ \& \forall y \in (x, x_2) : f(y) < \mp f(x) \bigg],$$

$$\Phi_{+-}(x) = \exists c_1, \exists c_2 \in I \bigg[c_1 < x < c_2 \& \forall y \in (c_1, x) : f(y) > f(x) \\ \& \forall y \in (x, x_2) : f(y) < f(x) \bigg],$$

$$\Phi_{-+}(x) = \exists c_1, \exists c_2 \in I \left[c_1 < x < c_2 \& \forall y \in (c_1, x) : f(y) < f(x) \\ \& \forall y \in (x, x_2) : f(y) > f(x) \right].$$

2 The Cell Decomposition Theorem

Definition 2.1. Let $i = (i_1, i_2, \dots, i_m) \in \{0, 1\}^m$. An *i*-cell is (definable) subset of \mathbb{R}^m defined inductively as follows

Base Case. A 0-cell is a point in R, a 1-cell is an interval in R.

Inductive Definition. Suppose that we have already defined (i_1, \dots, i_m) -cells, an $(i_1, \dots, i_m, 0)$ -cell is the graph $\Gamma(f)$ of a function f in $C_{\infty}(X)$ with X an (i_1, \dots, i_m) -cell. An $(i_1, \dots, i_m, 1)$ -cell is a set $(f, g)_X$ where X is a (i_1, \dots, i_m) -cell, $f < g \in C_{\infty}(X)$.

Definition 2.2. A decomposition of \mathbb{R}^m is a partition of \mathbb{R}^m into finitely many cells. The definition is done by induction of the dimension m:

(i) A decomposition of R is a collection of disjoint (0) and (1) cells such that their union is R, specifically a collection

 $\{(-\infty, a_1), (a_1, a_2) \cdots, (a_k, +\infty), \{a_1\}, \cdots, \{a_k\}\},\$

where a_1, \dots, a_k are just points in R.

- (ii) A decomposition of \mathbb{R}^{m+1} is a finite partition of \mathbb{R}^{m+1} into cells A_1, \dots, A_n such that the set if projections $\{\pi(A_i) : 1 \leq i \leq n\}$ is a decomposition of \mathbb{R}^m .
- **Theorem 2.1** (Cell Decomposition). (I) Let $A_1, \dots A_k \subset \mathbb{R}^m$, then there is a decomposition of \mathbb{R}^m partitioning each of A_1, \dots, A_k .
- (II) For each definable function $f : A \to R, A \subset R^m$, there is a decomposition \mathcal{D} of R^m such that the restriction $F|B: B \to R$ to each cell $B \in \mathcal{D}$ is continuous.

3 Finiteness Lemma

Proposition 3.1 (Finiteness Lemma). Let $A \subset R^2$ be definable and suppose that for each $x \in R$ the fiber $A_x : +\{y \in R : (x, y) \in A\}$ is finite. Then there is $N \in \mathbb{N}$ such that $|A_x| < N$ for all $x \in R$.

$$\begin{split} \lambda(a,-) &= \lim_{\uparrow x \to a} f_{n+1}(x) \text{ if } f_{n+1} \text{ is defined on some interval}(t,a), \\ &= \infty \text{ otherwise }, \\ \lambda(a,0) &= f_{n+1}(a) \text{ if } a \in \operatorname{dom}(f_{n+1}), \\ &= \infty \text{ otherwise }, \\ \lambda(a,+) &= \lim_{\downarrow x \to a} f_{n+1}(x) \text{ if } f_{n+1} \text{ is defined on some interval}(a,t), \\ &= \infty \text{ otherwise.} \end{split}$$

 $\mathcal{B}_{-} := \{ a \in \mathcal{B} : \exists y(y < \beta(a)\&(a, y) \in A) \}, \\ \mathcal{B}_{+} := \{ a \in \mathcal{B} : \exists y(y > \beta(a)\&(a, y) \in A) \},$

and the functions $\beta_- : \mathcal{B}_- \to R$ and $\beta_+ : \mathcal{B}_+ \to R$ by

$$\begin{split} \beta_{-}(a) &:= \max\{y \; : \; y < \beta(a)\&(a,y) \in A\}, \\ \beta_{+}(a) &:= \max\{y \; : \; y > \beta(a)\&(a,y) \in A\}. \end{split}$$

Since B is infinite by assumption, one of the (definable) sets $\mathcal{B}_+ \cup \mathcal{B}_-, \mathcal{B}_+ \setminus \mathcal{B}_-, \mathcal{B}_- \setminus \mathcal{B}_+, \mathcal{B} \setminus (\mathcal{B}_- \cup \mathcal{B}_+)$ is infinite, and each of these four cases will lead to a contradiction.

Corollary 3.1. Let $A \in \mathbb{R}^2$ be definable such that A_x is finite for each $x \in \mathbb{R}$. There there are points $a_1 < \cdots < a_k$ such that the intersection of A with each vertical strip $(a_i, a_{i+1}) \times \mathbb{R}$ has the form $\Gamma(f_{i,1}) \cup \cdots \cup \Gamma(f_{i,n(i)})$ for certain definable continuous functions $f_{i,j} : (a_i, a_{i+1}) \to \mathbb{R}$ with $f_{i,1}(x) < \cdots < f_{i,n(i)}(x)$ for each $x \in (a_i, a_{i+1})$, we have set $a_0 = -\infty$ and $a_{k+1} = +\infty$.

The proof is this is a homework exercise.

References

 L. van den Dries, Tame Topology and O-minimal Structures (43-53) London Mathematical Society (1998) ISBN 0 521 59838 9

Homework Exercises - Due 7/11

Exercise 1(3 points) Let $A \in \mathbb{R}^2$ be definable such that A_x is finite for each $x \in \mathbb{R}$. Show that there are points $a_1 < \cdots < a_k$ such that the intersection of A with each vertical strip $(a_i, a_{i+1}) \times \mathbb{R}$ has the form $\Gamma(f_{i,1}) \cup \cdots \cup \Gamma(f_{i,n(i)})$ for certain definable continuous functions $f_{i,j} : (a_i, a_{i+1}) \to \mathbb{R}$ with $f_{i,1}(x) < \cdots < f_{i,n(i)}(x)$ for each $x \in (a_i, a_{i+1})$, we have set $a_0 = -\infty$ and $a_{k+1} = +\infty$. (Hint: use the functions defined in the proof of the finiteless lemma and then apply the monotonicity theorem)

We will now use the previous exercise to show that if A has infinite fibers, its boundary consists of graphs of continuous definable functions.

Exercise 2 (1 point) Let $A \in \mathbb{R}^n$ be definable such that A_x is infinite for each $x \in \mathbb{R}$. Show that there are points $a_1 < \cdots < a_k$ such that the intersection of $B_{d2}(A) := \{(x,r) \in A : r \in \partial(A_x)\}$ with each vertical strip $(a_i, a_{i+1}) \times \mathbb{R}$ has the form $\Gamma(f_{i,1}) \cup \cdots \cup \Gamma(f_{i,n(i)})$ for certain definable continuous functions $f_{i,j} : (a_i, a_{i+1}) \to \mathbb{R}$ with $f_{i,1}(x) < \cdots < f_{i,n(i)}(x)$ for each $x \in (a_i, a_{i+1})$, we have set $a_0 = -\infty$ and $a_{k+1} = +\infty$. (Here ∂A_x is the (topological) boundary of A_x)

Exercise 3 (2 points) Let $f : [a,b] \to R$ be continuous and definable. Show that f takes a maximum and a minimum value on [a,b].

Exercise 4 (2 points) Let I and J be intervals and $f : I \to R$ and $g : J \to R$ strictly monotone definable functions such that $f(I) \subset g(J)$ and $\lim_{x\to r(I)} f(x) = \lim_{x\to r(J)} g(t)$ in R_{∞} , where r(I) and r(J) are the right endpoints of the intervals I and J in R_{∞} . Show that near these right endpoints f and g are reparametrisations of each other, that is there are subintervals I' of I and J with r(I) = r(I'), r(J) = r(J') and a strictly increasing definable bijection $h : I' \to J'$ such that f(x) = g(h(x)) for all $s \in I'$.