O-minimal Structures - Assignment 5

14 november 2014

1

Let (R, <, S) be an o-minimal structure. Let A be a cell in \mathbb{R}^{m+1} . Note that $\pi(A)$ is a cell in \mathbb{R}^m , where $\pi: \mathbb{R}^{m+1} \to \mathbb{R}^m$ is the projection on the first m coordinates

- a) Prove that $\pi^{-1}(\{x\}) \cap A$ is definably connected, for all $x \in \pi(A)$. Hint: use the definition.
- b) Assume that A is definably disconnected, i.e. there exists nonempty definably open subsets $U, V \subset X$, such that $A = U \cup V$ and $U \cap V = \emptyset$. Show that $\pi^{-1}(\{x\}) \cap A \subset U$ or $\pi^{-1}(\{x\}) \cap A \subset V$, for all $x \in \pi(A)$.
- c) Let $C = \{x \in \pi(A) : \pi^{-1}(\{x\}) \cap A \subset U\}$ and $D = \{x \in \pi(A) : \pi^{-1}(\{x\}) \cap A \subset V\}$. Prove that C and D are open in $\pi(A)$. Hint: there is an obvious open mapping.
- d) Prove that if $\pi(A)$ is definably connected, then A is definably connected. And prove by using induction on m, that each cell is definably connected.

$\mathbf{2}$

Let (R, <, S) be an o-minimal structure. Let A be a cell in \mathbb{R}^m and Y be a definable set in \mathbb{R}^{m+1} and let $p: \mathbb{R}^m \to \mathbb{R}^k$ be defined as on page 51. Then p(A) is an open cell in \mathbb{R}^k . Let $id: \mathbb{R} \to \mathbb{R}$ be the identity map. Assume that there exists $n \in \mathbb{N}$, such that $|(p, id)Y_{p(x)}| < n$ for all $x \in p(A)$. Prove that there exists $m \in \mathbb{N}$, such that $|Y_x| < m$ for all $x \in A$.