Tame Topology and O-minimal Structures-Dimensions, Homework Set

Tingxiang Zou (tingxiangzou@gmail.com)

In the following exercises we fix an O-minimal structure (R, <, S):

Exercise 1: (3 points) (Dimensions of Sets from Definable Families) Let A and B be definable subsets of R^{m+n} , with A non-empty. Assume that, for every $a \in R^m$, dim $(B_a) < \dim(A_a)$. Prove that dim $B < \dim A$. (For definition of A_a and B_a , check p.59 (3.1).)

Exercise 2: (Local Dimension, p.69 (1.17) Exercise 2, 3, 4.)

1. (2 points) Let $A \subseteq \mathbb{R}^m$ be definable and $a \in \mathbb{R}^m$. Show there is a number $d \in \{-\infty, 0, \cdots, \dim A\}$ such that there is an open box $U \subseteq \mathbb{R}^m$ with $a \in U$, and for all open box $V \subseteq \mathbb{R}^m$, if $a \in V$ and $V \subseteq U$, then $\dim(V \cap A) = d$.

Remark: The number d defined by this property is called the **local dimension of** A **at** a, notation $\dim_a(A)$. Note that $\dim_a(A) = -\infty$ iff $a \notin cl(A)$.

- 2. (2 points) Show that if $A \subseteq \mathbb{R}^m$ is a *d*-dimensional cell, then $\dim_a(A) = d$ for all $a \in cl(A)$. (Hint: use the homeomorphism p_A defined in p.51 (2.7).)
- 3. (3 points) Let A ⊆ R^m be a definable set and d ∈ {0, · · · , dimA}. Show that the set {a ∈ R^m : dim_a(A) ≥ d} is a definable closed subset of cl(A). (Hint: apply cell decomposition theorem to cl(A), then show the set {a ∈ R^m : dim_a(A) ≥ d} is the closure of a finite union of cells.)

Show also that if $A \neq \emptyset$, then $\dim(\{a \in \operatorname{cl}(A) : \dim_a(A) < d\}) < d$.