Tame Topology and O-minimal Structures, Euler Characteristic, homework set _{Due, 05-12-2014}

Niels Voorneveld (n.f.w.voorneveld@students.uu.nl)

We take an o-minimal structure (R, <, S).

1 Cell decomposition (5 points)

Take a cell $C \subset \mathbb{R}^m$. This exercise tackles the similarity between the definition of a cell decomposition of \mathbb{R}^m and the definition of a decomposition of a cell. The definition of a decomposition of a cell is given on page 70.

a. (2 points) Prove that if **D** is a cell decomposition of \mathbb{R}^m that partitions C, than $\mathbf{D}|C = \{E : E \in \mathbf{D}, E \subseteq C\}$ is a decomposition of C.

b. (3 points) Prove that for any decomposition \mathbf{D} of C, there is a cell decomposition of \mathbb{R}^m that restricts to \mathbf{D} on C.

2 Closure (5 points)

Prove that the Euler characteristic of the closure of a bounded cell $C \subset R^m$ is always 1. Bounded means there is a box $B = [a_0, b_0] \times [a_1, b_1] \times ... \times [a_n, b_n]$ with $a_i, b_i \in R$ for all i, such that $C \subset B$.

Hint: Use induction and consider the cases $i_m = 0$ and $i_m = 1$ separately. Use proposition 2.4.