Seminar O-minimal Structures

hand-in exercise 8, due: 2014/12/19

We fix an o-minimal structure $(R, <, \mathcal{S})$.

exercise 1. In this exercise you must try to find definable sets for which $f_{\mathcal{C}}$ grows "at least as fast" as a given function.

a. In this exercise you show that the polynomial bounds $p_d(n)$ which we will obtain from the main theorem are "tight". Show that for every d > 0 there exists a definable relation $S \subseteq \mathbb{R}^{d-1} \times \mathbb{R}$ such that, if we put $\mathcal{C} = \{S_x \mid x \in \mathbb{R}^{d-1}\}$, then $f_{\mathcal{C}}(n) = p_d(n)$ for every n.

b. Assume for this part that (R, <, S) expands an ordered abelian group (R, <, +, 0). Show that for every natural number c there exists a definable set $S \subseteq R \times R$ and a natural number N such that, putting $C = \{S_x \mid x \in R\}$, we have $f_C(n) > cn$ for every $n \ge N$.

exercise 2. Let $S \subseteq R \times R^q$. Again, put $\mathcal{C} = \{S_x \mid x \in R\}$, and put $\mathcal{G} = \{S^y \mid y \in R^q\} \subseteq \mathcal{P}(R)$. We have seen that there exists an $e \in \mathbb{N}$ such that $f^{\mathcal{G}}(n) \leq p_3(en)$. Therefore, $f_{\mathcal{C}}$ is of at most quadratic growth. This exercise asks you to improve on this.

a. Show that for any decomposition $\mathcal{D} = \{ E_1, \ldots, E_k \}$ of R, the atoms of the boolean algebra $B(E_1, \ldots, E_k)$ are precisely E_1, \ldots, E_k .

b. Assume $S_1, \ldots, S_k \subseteq R$ are definably connected. Show that there is a decomposition of R into at most 4k + 1 cells, partitioning each of the S_i .

c. Show that there exist natural numbers c and N such that if $F \subseteq R^q$ is any finite set with at least $n \geq N$ elements, then $|\mathcal{C} \cap F| \leq cn$.