solution to exercise 1

For part (1), let $A \subseteq R$ definable. Then A is a finite union of intervals and points: $A=\bigcup_{i=1}^{k}\left(p_{i}, q_{i}\right) \cup\left\{r_{1}, \ldots, r_{l}\right\}$, with $-\infty \leq p_{i}<q_{i} \leq+\infty$ for every i, and all $r_{j} \in R$. If for some $i, q_{i}=+\infty$, then for every $x>p_{i}, x \notin R \backslash A$. So p_{i} is an upper bound for $R \backslash A$. Otherwise, let $s=\max \left\{q_{1}, \ldots, q_{k}, r_{1}, \ldots, r_{l}\right\}$. Then clearly s is an upper bound for A. For the statement about lower bounds the argument is entirely similar.
For part (2), first observe that every definable infinite subset $A \subseteq R$ must contain an interval, for otherwise it would be a finite union of just points. Second, if X is dense in R, that is: for every p, q, if $p<q$ then there exists x with $p<x<q$, then X is cofinite. For, if $R \backslash X$ were infinite, then we would have an interval $(p, q) \subseteq R \backslash X$, contradicting X being dense in R. Now, if X is dense in Y, then $X \cup(R \backslash Y)$ is dense in R. For suppose $p<q$ are such that $(p, q) \cap(X \cup(R \backslash Y))=\emptyset$, then $(p, q) \subseteq Y \backslash X$. But then (p, q) is open in Y and does not intersect X, contradicting X being dense in Y. So $X \cup(R \backslash Y)$ is cofinite. Its complement, $Y \backslash X$, is therefore finite. Since finite sets are closed in Y, we see that X is open in Y.

solution to exercise 2

First we prove: for every definable $A \subseteq R, \operatorname{bd}(A)$ is finite. Suppose not, then by assumption (3) there exist p, q such that $p<q$ and $(p, q) \subseteq \operatorname{bd}(A)$. In particular, $(p, q) \subseteq \operatorname{cl}(A)$, so $A \cap(p, q)$ is dense in (p, q) (since every non-empty interval $\left(p^{\prime}, q^{\prime}\right) \subseteq(p, q)$ is the neighborhood of a point in $\operatorname{cl}(A)$ and therefore intersects A). Then by assumption (4), $A \cap(p, q)$ is open in (p, q). Since $A \cap(p, q)$ is non-empty, we can find a non-empty interval $\left(p^{\prime}, q^{\prime}\right) \subseteq A \cap(p, q)$. But then $(p, q) \cap \operatorname{int}(A) \neq \emptyset$, contradicting the assumption that $(p, q) \subseteq \operatorname{bd}(A)$.
Now let A be an arbitrary definable subset of R. We claim that for every interval (a, b) such that $(a, b) \cap \operatorname{bd}(A)=\emptyset$, either $(a, b) \subseteq A$ or $(a, b) \subseteq R \backslash A$. We distinguish the case where one or both of the endpoints is $\pm \infty$ from the case where the endpoints are both in R.
Start with the case where at least one of the endpoints is $\pm \infty$. We can assume without loss of generality that $b=+\infty$. Note that the special case where $(a, b)=(-\infty,+\infty)$, that is: $\operatorname{bd}(A)=\emptyset$, also falls under this assumption. If $A=\emptyset$ or $A=R$ we are done. Otherwise, either A or $R \backslash A$ has an upper bound in R. Without loss of generality assume $R \backslash A$ has an upper bound and put $c=\sup (R \backslash A)$ by assumption (2). Observe that for every $p<c$ there exists $x \in R \backslash A$ such that $p<x<c$, since c is the least upper bound for $R \backslash A$. And for every x such that $c<x, x \in A$. So for every p, q such that $p<c<q$, both $(p, q) \cap(R \backslash A) \neq \emptyset$ and $(p, q) \cap A \neq \emptyset$. So $c \in \operatorname{bd}(A)$. Hence by assumption, $c \notin(a,+\infty)$. If $a=-\infty$, this constitutes a contradiction and we can conclude that $A=\emptyset$ or $A=R$ and we are done. Otherwise we must have $c \leq a$, hence for every $x>a, x \in A$. That is, $(a,+\infty) \subseteq A$, as required.
Now consider (a, b) where $a, b \in R$. If $\operatorname{int}(A) \cap(a, b)=\emptyset$, then $(R \backslash A) \cap(a, b)$ is dense in (a, b), hence open in (a, b). In that case, if $a<x<b$ and $x \in A$, then certainly $x \in \operatorname{cl}(A)$ and by assumption $x \notin \operatorname{int}(A)$. But then $x \in \operatorname{bd}(A)$ contradicting our assumption that $(a, b) \cap \operatorname{bd}(A)=\emptyset$. So such x cannot exist, and therefore $(a, b) \subseteq R \backslash A$. Similarly, if $\operatorname{int}(R \backslash A) \cap(a, b)=\emptyset$, then $(a, b) \subseteq A$. We are left with the case that there exist p, q such that $a<p<q<b$ and
$(p, q) \subseteq A$, and r, s such that $(r, s) \subseteq R \backslash A$. We will derive a contradiction. Clearly, either $q<r$ or $s<p$. Without loss of generality, assume $q<r$. Define $D=\{x \in R \mid \forall y \in R . p<y<x \rightarrow y \in A\}$. Note that D is definable and $q \in D$, so we may define $c=\sup (D)$. Note that $q \leq c \leq r$ so $c \in(a, b)$. Now, for every $p^{\prime}<c$ there exists x such that $\max \left(p, p^{\prime}\right)<x<c$ and therefore $x \in A$. So, clearly $c \in \operatorname{cl}(A)$. And $c \notin \operatorname{int}(A)$, for otherwise we could find $x \in D$ with $x>c$. But then $c \in \operatorname{bd}(A)$, and $c \in(a, b)$ contradicting our assumption.
Finally, using that the boundary $\operatorname{bd}(A)=\operatorname{bd}(R \backslash A)$ is finite, let it be enumerated in order by $b_{1}<\ldots<b_{k}$, and in addition put $b_{0}=-\infty$ and $b_{k+1}=+\infty$. Since for every $i \leq k$, either $\left(b_{i}, b_{i+1}\right) \subseteq A$ or $\left(b_{i}, b_{i+1}\right) \subseteq R \backslash A$, we can indeed write A as a finite union of intervals and points.

