Hand-in Exercise 2 - O-minimal Structures

24 oktober 2014

Problem 1.

Let F denote an ordered field and let R be a nontrivial ordered F-linear space as defined in (7.2). Construe R as a model-theoretic structure for the language $L_{F}=\{<, 0,-,+\} \cup\{\lambda \cdot: \lambda \in F\}$ of ordered abelian groups augmented by a unary function symbol λ. for each $\lambda \in F$, to be interpreted as multiplication by the scalar λ. Prove:

1. The subsets of R^{m} definable in the L_{F}-structure \mathcal{R} using constants are exactly the semilinear sets in R^{m}.
2. The maps $R \rightarrow R$ that are additive and definable using constants are exactly the scalar multiplications by elements of F. A map f is additive iff

$$
\forall r_{1}, r_{2} \in R: f\left(r_{1}+r_{2}\right)=f\left(r_{1}\right)+f\left(r_{2}\right)
$$

Solution

1. (2 points)

This little exercise is a good example of the concepts defined in paragraph 5 , modeltheoretic structures. We have to prove that the subsets of R^{m} definable in the structure $\operatorname{Def}\left(\mathcal{R}_{R}\right)$ are exactly the semilinear sets in R^{m}. Since every affine function is definable using constants from R, we conclude that all basic semilinear sets in R^{m} are definable using constants. This means that the basic semilinear sets are definable using constants in every structure on R that contains the relations and the functions of the L_{F}-structure. Since every structure has to be a boolean algebra on every level of the structure, we conclude that every structure, containing the basic semilinear sets, defines the semilinear sets. Hence the semilinear sets are defined in $\operatorname{Def}\left(\mathcal{R}_{R}\right)$. Furthermore, Corollary (7.6) shows that $\left(\mathcal{S}_{m}\right)_{m \in \mathbb{N}}$, with \mathcal{S}_{m} the boolean algebra of semilinear subsets of R^{m}, is actually a structure. We conclude that $\operatorname{Def}\left(\mathcal{R}_{R}\right)$ is said structure and that the subsets of R^{m} definable in $\operatorname{Def}\left(\mathcal{R}_{R}\right)$ are exactly the semilinear sets in R^{m}.
2. (8 points)

Notice that the scalar multiplications are indeed definable and additive. (Additivity is a property of scalar multiplication in a vector space).
Let $f: R \rightarrow R$ be an additive map, definable in the L_{F}-structure \mathcal{R} using constants. Following definition (7.2), we see that R is an ordered additive group and using proposition (4.2), we conclude that R is abelian, divisible and torsion-free. Writing the identity element of R as 0 , we see that $f(0)=f(0+0)=f(0)+f(0)$. Since R is torsion-free, $f(0)$ has
to be the identity element, so $f(0)=0$. Furthermore, writing the additive inverse of an element $r \in R$ as $-r$, we see that $0=f(0)=f(r+(-r))=f(r)+f(-r)$, which means that $-f(r)=f(-r)$.
In point 1 of the exercise, we saw that $\operatorname{Def}\left(\mathcal{R}_{R}\right)$ is the structure defined in corollary (7.6), so we can apply the same corollary to see that there is a partition of R into basic semilinear sets $A_{i},(1 \leq i \leq k)$, such that $f \mid A_{i}$ is the restriction to A_{i} of an affine function on R, for each $i \in\{1, \ldots, k\}$. Using this we can write $f(x)=\lambda_{i} x+a_{i}$ for all $x \in A_{i}$, with $\lambda_{i} \in F, a_{i} \in R, i \in\{1, \ldots, k\}$. Since R is infinite (for example because it is torsion-free) and our partition finite of definable subsets, there is at least one A_{i}, such that A_{i} contains an interval. Take WLOG A_{1} as such an element in our partition and let $y, z \in R$ s.t. $(y, z) \subset A_{1}$. Let $x \in(y, z)$ and $r \in R$, s.t. $x+r \in(y, z)$. We then have for all $r^{\prime} \in(0, r)$, (so $x+r^{\prime} \in(y, z) \subset A_{1}$), the following:

$$
\begin{gathered}
f\left(r^{\prime}\right)=f\left(x+r^{\prime}-x\right)=f\left(x+r^{\prime}\right)+f(-x)=f\left(x+r^{\prime}\right)-f(x)=\lambda_{1}\left(x+r^{\prime}\right)+a_{1}-\left(\lambda_{1} x+a_{1}\right) \\
=\lambda_{1} x+\lambda_{1} r^{\prime}+a_{1}-\lambda_{1} x-a_{1}=\lambda_{1} r^{\prime}
\end{gathered}
$$

Here we used the usual properties of scalar multiplication in a vector space. Write this λ_{1} as λ. We'll now first prove that for every A_{i} containing an interval, $\lambda_{i}=\lambda$. Next we'll prove that for all $x \in R, x \in A_{j}$, that $f(x)=\lambda_{j} x+a_{j}=\lambda x$, concluding our prove that every additive and definable map: $R \rightarrow R$ is a scalar multiplication by elements of F.
Let A_{i} be an element in our partition containing an interval. Then there are $x \in A_{i}$, $r^{\prime} \in(0, r)$ s.t. $x+r^{\prime} \in A_{i}$. Now we have that $\lambda_{i} x+\lambda_{i} r^{\prime}+a_{i}=\lambda_{i}\left(x+r^{\prime}\right)+a_{i}=f\left(x+r^{\prime}\right)=$ $f(x)+f\left(r^{\prime}\right)=\lambda_{i} x+a_{i}+\lambda r^{\prime}$. This means that $\lambda r^{\prime}=\lambda_{i} r^{\prime}$, which implies that $\lambda=\lambda_{j}$. Suppose not and assume WLOG that $\lambda>\lambda_{i}$, because we have a linear order on F. Then $\left(\lambda-\lambda_{i}\right) r^{\prime}=0$, but $\lambda-\lambda_{i}>0$ and $r^{\prime}>0$. This is in direct contradiction with definition 7.2 of an ordered F-linear space. We conclude that for every A_{i} containing an interval $\lambda_{i}=\lambda$. Next let A_{j} be any element of our partition and let $x \in A_{j}$. Notice that we have a finite number of sets in our partition, each being a finite union of intervals and points. Since R is torsion-free and since F has an infinite number of elements, we conclude that there exist two different $n_{1}, n_{2} \in F$ s.t. $n_{1} x=(1+\cdots+1) x=x+\cdots+x \in A_{k}$ and $n_{2} x \in A_{k}$, where A_{k} is an element in our partition containing an interval. Hence we have that $n_{1}\left(\lambda_{j} x+a_{j}\right)=n_{1} f(x)=f(x)+\cdots+f(x)=f(x+\cdots+x)=f\left(n_{1} x\right)=\lambda n_{1} x+a_{k}$ and $n_{2}\left(\lambda_{j} x+a_{j}\right)=n_{2} f(x)=f(x)+\cdots+f(x)=f(x+\cdots+x)=f\left(n_{2} x\right)=\lambda n_{2} x+a_{k}$. If we subtract these expressions from each other, we find that $\left(n_{1}-n_{2}\right)\left(\lambda_{j} x+a_{j}\right)=$ $n_{1}\left(\lambda_{j} x+a_{j}\right)-n_{2}\left(\lambda_{j} x+a_{j}\right)=\lambda n_{1} x+a_{k}-\left(\lambda n_{2} x+a_{k}\right)=\left(n_{1}-n_{2}\right) \lambda x$. Again we have used the usual properties of scalar multiplication in a vector space. Furthermore we used that F has commutative multiplication, since it is by definition an ordered field. Now multiplying with the multiplicative inverse of $\left(n_{1}-n_{2}\right)$, which exists since $n_{1} \neq n_{2}$, we find that $f(x)=\lambda_{j} x+a_{j}=\lambda x$. This holds for every A_{j} in our partition and every $x \in A_{j}$, so it holds for every $x \in R$.
We conclude that the maps $R \rightarrow R$ that are additive and definable using constants are exactly the scalar multiplications by elements of F.

