
Hand-in Exercise 2 - O-minimal Structures

24 oktober 2014

Problem 1.
Let F denote an ordered field and let R be a nontrivial ordered F -linear space as defined in (7.2).
Construe R as a model-theoretic structure for the language LF = {<, 0,−,+} ∪ {λ· : λ ∈ F}
of ordered abelian groups augmented by a unary function symbol λ· for each λ ∈ F , to be
interpreted as multiplication by the scalar λ. Prove:

1. The subsets of Rm definable in the LF -structure R using constants are exactly the
semilinear sets in Rm.

2. The maps R → R that are additive and definable using constants are exactly the scalar
multiplications by elements of F . A map f is additive iff

∀r1, r2 ∈ R : f(r1 + r2) = f(r1) + f(r2).

Solution

1. (2 points)
This little exercise is a good example of the concepts defined in paragraph 5, model-
theoretic structures. We have to prove that the subsets of Rm definable in the structure
Def(RR) are exactly the semilinear sets in Rm. Since every affine function is definable
using constants from R, we conclude that all basic semilinear sets in Rm are definable
using constants. This means that the basic semilinear sets are definable using constants
in every structure on R that contains the relations and the functions of the LF -structure.
Since every structure has to be a boolean algebra on every level of the structure, we
conclude that every structure, containing the basic semilinear sets, defines the semilinear
sets. Hence the semilinear sets are defined in Def(RR). Furthermore, Corollary (7.6)
shows that (Sm)m∈N, with Sm the boolean algebra of semilinear subsets of Rm, is actually
a structure. We conclude that Def(RR) is said structure and that the subsets of Rm

definable in Def(RR) are exactly the semilinear sets in Rm. 2

2. (8 points)
Notice that the scalar multiplications are indeed definable and additive. (Additivity is a
property of scalar multiplication in a vector space).
Let f : R → R be an additive map, definable in the LF -structure R using constants.
Following definition (7.2), we see that R is an ordered additive group and using proposition
(4.2), we conclude that R is abelian, divisible and torsion-free. Writing the identity element
of R as 0, we see that f(0) = f(0 + 0) = f(0) + f(0). Since R is torsion-free, f(0) has
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to be the identity element, so f(0) = 0. Furthermore, writing the additive inverse of an
element r ∈ R as −r, we see that 0 = f(0) = f(r + (−r)) = f(r) + f(−r), which means
that −f(r) = f(−r).
In point 1 of the exercise, we saw that Def(RR) is the structure defined in corollary (7.6),
so we can apply the same corollary to see that there is a partition of R into basic semilinear
sets Ai, (1 ≤ i ≤ k), such that f |Ai is the restriction to Ai of an affine function on R,
for each i ∈ {1, . . . , k}. Using this we can write f(x) = λix + ai for all x ∈ Ai, with
λi ∈ F , ai ∈ R, i ∈ {1, . . . , k}. Since R is infinite (for example because it is torsion-free)
and our partition finite of definable subsets, there is at least one Ai, such that Ai contains
an interval. Take WLOG A1 as such an element in our partition and let y, z ∈ R s.t.
(y, z) ⊂ A1. Let x ∈ (y, z) and r ∈ R, s.t. x + r ∈ (y, z). We then have for all r′ ∈ (0, r),
(so x+ r′ ∈ (y, z) ⊂ A1), the following:

f(r′) = f(x+ r′−x) = f(x+ r′) + f(−x) = f(x+ r′)− f(x) = λ1(x+ r′) + a1− (λ1x+ a1)

= λ1x+ λ1r
′ + a1 − λ1x− a1 = λ1r

′.

Here we used the usual properties of scalar multiplication in a vector space. Write this λ1
as λ. We’ll now first prove that for every Ai containing an interval, λi = λ. Next we’ll
prove that for all x ∈ R, x ∈ Aj , that f(x) = λjx + aj = λx, concluding our prove that
every additive and definable map: R→ R is a scalar multiplication by elements of F .
Let Ai be an element in our partition containing an interval. Then there are x ∈ Ai,
r′ ∈ (0, r) s.t. x+ r′ ∈ Ai. Now we have that λix+λir

′ +ai = λi(x+ r′) +ai = f(x+ r′) =
f(x) + f(r′) = λix + ai + λr′. This means that λr′ = λir

′, which implies that λ = λj .
Suppose not and assume WLOG that λ > λi, because we have a linear order on F . Then
(λ−λi)r′ = 0, but λ−λi > 0 and r′ > 0. This is in direct contradiction with definition 7.2
of an ordered F -linear space. We conclude that for every Ai containing an interval λi = λ.
Next let Aj be any element of our partition and let x ∈ Aj . Notice that we have a
finite number of sets in our partition, each being a finite union of intervals and points.
Since R is torsion-free and since F has an infinite number of elements, we conclude that
there exist two different n1, n2 ∈ F s.t. n1x = (1 + · · · + 1)x = x + · · · + x ∈ Ak and
n2x ∈ Ak, where Ak is an element in our partition containing an interval. Hence we have
that n1(λjx + aj) = n1f(x) = f(x) + · · · + f(x) = f(x + · · · + x) = f(n1x) = λn1x + ak
and n2(λjx + aj) = n2f(x) = f(x) + · · · + f(x) = f(x + · · · + x) = f(n2x) = λn2x + ak.
If we subtract these expressions from each other, we find that (n1 − n2)(λjx + aj) =
n1(λjx + aj) − n2(λjx + aj) = λn1x + ak − (λn2x + ak) = (n1 − n2)λx. Again we have
used the usual properties of scalar multiplication in a vector space. Furthermore we used
that F has commutative multiplication, since it is by definition an ordered field. Now
multiplying with the multiplicative inverse of (n1 − n2), which exists since n1 6= n2, we
find that f(x) = λjx+aj = λx. This holds for every Aj in our partition and every x ∈ Aj ,
so it holds for every x ∈ R.
We conclude that the maps R → R that are additive and definable using constants are
exactly the scalar multiplications by elements of F . 2
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