O-minimal Structures - Solution to assignment 3

Solution to exercise 1

(a) Let $A \subset X \times Y$ be closed. We show that $X \backslash \pi(A)$ is open. Let $x \in X \backslash \pi(A)$ and note that $\{x\} \times Y \subset(X \times Y) \backslash A$. Since Y is compact and $(X \times Y) \backslash A$ is open, by the Tube Lemma there exists $U \subset X$ open and containing x, such that $U \times Y \subset(X \times Y) \backslash A$. This implies that $U \subset X \backslash \pi(A)$. We conclude that $X \backslash \pi(A)$ is open. Hence $\pi(A)$ is closed.
(b) We show that the preimage of a closed set under f is closed. Let $A \subset X \times Y$ be closed. Verify that $f^{-1}(A)=\pi(\Gamma(f) \cap(X \times A))$, with π as in part (a). Now $\Gamma(f) \cap(X \times A)$ is closed, as $\Gamma(f)$ and $(X \times A)$ are both closed. The result of part (a) then tells us that $\pi(\Gamma(f) \cap(X \times A))$ is closed, as desired. Hence f is continuous.

Solution to exercise 2

(a) We use induction over m to prove the statement in the exercise.

First set $m=1$, so that $f=f\left(X_{1}\right) \in F\left[X_{1}\right]$. Suppose that $f \neq 0$. Then, because F is a field, the number of distinct zeros of $f\left(X_{1}\right)$ is at $\operatorname{most}^{\operatorname{deg}_{X_{1}}}(f)$. But then $\operatorname{deg}_{X_{1}}(f) \leq d_{1}<\left|A_{1}\right| \leq$ $\operatorname{deg}_{X_{1}}(f)$, which is a contradiction. We conclude that $f=0$.
Now suppose that the statement in the exercise is true for $m=n$. Suppose also that $f=$ $f\left(X_{1}, \ldots, X_{n+1}\right) \in F\left[X_{1}, \ldots, X_{n+1}\right] ; d_{1}, \ldots, d_{n+1} \in \mathbb{N}$ and $A_{1}, \ldots, A_{n+1} \subset F$ satisfy the assumptions of the statement for $m=n+1$; that is, $\operatorname{deg}_{X_{i}}(f) \leq d_{i}$ for $1 \leq i \leq n+1 ;\left|A_{1}\right|>$ $d_{1}, \ldots,\left|A_{n+1}\right|>d_{n+1}$ and the restriction of f to $A_{1} \times \cdots \times A_{n+1}$ is identically zero. Let $a \in A_{n+1}$. Then $f\left(X_{1}, \ldots, X_{n}, a\right) \in F\left[X_{1}, \ldots, X_{n}\right], d_{1}, \ldots, d_{n} \in \mathbb{N}$ and $A_{1}, \ldots, A_{n} \subset F$ satisfy the assumptions of the statement for $m=n$. By our hypothesis, we must have that $f\left(X_{1}, \ldots, X_{n}, a\right) \equiv 0$. We view $f\left(X_{1}, \ldots, X_{n+1}\right) \in F\left[X_{1}, \ldots, X_{n+1}\right]$ as $f\left(X_{n+1}\right) \in F\left[X_{1}, \ldots, X_{n}\right]\left[X_{n+1}\right]$. By the above, every $a \in A_{n+1}$ is a zero of $f\left(X_{n+1}\right)$. Note that $F\left[X_{1}, \ldots, X_{n}\right]$ is a domain, as F is a field. Suppose that $f \neq 0$. Then, because $F\left[X_{1}, \ldots, X_{n}\right]$ is a domain, the number of distinct zeros of $f\left(X_{n+1}\right)$ is at most $\operatorname{deg}_{X_{n+1}}(f)$. But then $\operatorname{deg}_{X_{n+1}}(f) \leq d_{n+1}<\left|A_{n+1}\right| \leq \operatorname{deg}_{X_{n+1}}(f)$, which is a contradiction. We conclude that $f=0$. So by induction, the statement is true for every $m \geq 1$.
(b) Note that F is dense and without endpoints. Indeed for $a, b \in F$ with $a<b$, we have that $a-1<a<\frac{a+b}{2}<b<b+1$. This implies that every interval in F contains an infinite amount of elements. Suppose that $\operatorname{int}(\mathrm{Z}(f)) \neq \emptyset$ and let $x \in \operatorname{int}(\mathrm{Z}(f))$. Then there exist intervals $A_{1}, \ldots, A_{m} \subset F$ such that $x \in A_{1} \times \cdots \times A_{m} \subset \operatorname{int}(\mathrm{Z}(f))$. Note that the function f and the sets
A_{1}, \ldots, A_{m} satisfy the conditions of part (a). Hence $f=0$. But this contradicts the assumption that $f \neq 0$. We must conclude that $\operatorname{int}(\mathrm{Z}(f))=\emptyset$.
Lastly, f is continuous, as it is a polynomial, so $\mathrm{Z}(f)=f^{-1}(\{0\})$ is closed, as $\{0\}$ is closed.

