Tame Topology Seminar - Homework 4

Pol van Hoften

November 10, 2014

Exercise 1(3 points. Let $A \in R^{2}$ be definable such that A_{x} is finite for each $x \in R$. Show that there are points $a_{1}<\cdots<a_{k}$ such that the intersection of A with each vertical strip $\left(a_{i}, a_{i+1}\right) \times R$ has the form $\Gamma\left(f_{i, 1}\right) \cup \cdots \cup \Gamma\left(f_{i, n(i)}\right.$ for certain definable continuous functions $f_{i, j}:\left(a_{i}, a_{i+1}\right) \rightarrow R$ with $f_{i, 1}(x)<\cdots<f_{i, n(i)}(x)$ for each $x \in\left(a_{i}, a_{i+1}\right)$, we have set $a_{0}=-\infty$ and $a_{k+1}=+\infty$. (Hint: use the functions defined in the proof of the finiteless lemma and then apply the monotonicity theorem)

The finiteness lemma gives us a number $N \in \mathbb{N}$ such that $\left|A_{x}\right|<N$ for all N (0.5 point). We can now define functions $f_{1}, \cdots f_{N}$ as in the proof of the finiteness lemma (0.5 point).

$$
f_{i}:\left\{x \in R:\left|A_{x}\right| \geq i\right\}, \quad x \mapsto i \text { th element of } A_{x} .
$$

We notice that the domain of f_{i} is definable for every i and the functions f_{i} are definable as well. This means that we can write the domain of a function f_{i} as the finite union of intervals and points $\bigcup_{j=1}^{n(i)} I_{i, j} \cup\left\{x_{i}, \cdots, x_{n(i)}\right.$ (0.5 point). Restricting f_{i} to one of these sub-intervals $I_{i, j}$ we find a decomposition of $I_{i, j}$ into intervals by the monotonicity theorem such that f is continuous on each of these sub-intervals (0.5 point). We shall call these new intervals $I_{i, j}$ again, by abuse of notation. Doing this for every i, we obtain a big (but finite) number of intervals. Now using the fact that the intersection of an interval is either empty or a new interval, we take all possible intersections of all these intervals. To be precise we consider the collection (where we index the intervals by 1 up to m)

$$
\mathcal{B}=\left\{\bigcup_{r=1}^{k} \bigcap_{\sigma \in S_{k}} I_{\sigma r} \subset A: 1 \leq k \leq n\right\},
$$

where we consider all possible intersections of k different intervals (using permutation notation). If we again numerate these intervals $I_{1}, \cdots I_{n}$ then on every interval, the function f_{i} is either continuous or not defined, so we can write $\left(I_{j} \times R\right) \cap A=\Gamma\left(f_{i}\right) \cup \cdots \cup \Gamma\left(f_{t(j)}\right)$, where $t(j)$ is maximal such that $f_{t(j)}$ is defined on I_{j}.

Now note that the collection \mathcal{B} still covers A so we are done. (1 point for the last part of the argument, there are many ways to do this but half a point will be subtracted if no refinement argument is considered).
We will now use the previous exercise to show that if A has infinite fibers, its boundary consists of graphs of continuous definable functions.

Exercise 2 (1 point) Let $A \in R^{n}$ be definable such that A_{x} is infinite for each $x \in R$. Show that there are points $a_{1}<\cdots<a_{k}$ such that the intersection of $B_{d 2}(A):=\left\{(x, r) \in A: r \in \operatorname{bd}\left(A_{x}\right)\right\}$ with each vertical strip $\left(a_{i}, a_{i+1}\right) \times R$ has the form $\Gamma\left(f_{i, 1}\right) \cup \cdots \cup \Gamma\left(f_{i, n(i)}\right.$ for certain definable continuous functions
$f_{i, j}:\left(a_{i}, a_{i+1}\right) \rightarrow R$ with $f_{i, 1}(x)<\cdots<f_{i, n(i)}(x)$ for each $x \in\left(a_{i}, a_{i+1}\right)$, we have set $a_{0}=-\infty$ and $a_{k+1}=+\infty$.

It is a result of chapter 1 that the boundary of a definable set is finite (0.5 point), this implies that $B_{d 2}(A)$ has finite fibers and so we can apply exercise (1) to obain the desired result (0.5 point).

Exercise 3 (2 points) Let $f:[a, b] \rightarrow R$ be continuous and definable. Show that f takes a maximum and a minimum value on $[a, b]$.

The monotonicity theorem gives us points $a, a_{1}, \cdots, a_{k}, b$ such that f is constant or strictly monotone on the subintervals (0.5 point).
We know that on every sub-interval $\left(a_{i}, a_{i+1}\right)$, the function f is either constant or strictly monotone, which means that the maximum and minimum value it takes on $\left[a_{i}, a_{i+1}\right]$, it must take in the endpoints (1 point).
Globally this means that $\max _{x \in[a, b]} f(x)=\max \left\{f(a), f\left(a_{1}\right), \cdots, f\left(a_{k}\right), f(b)\right\}$. and the same for the minimum, therefore the maximum/minimum exists (0.5 point).
Exercise 4 (2 points) Let I and J be intervals and $f: I \rightarrow R$ and $g: J \rightarrow R$ strictly monotone definable functions such that $f(I) \subset g(J)$ and $\lim _{x \rightarrow r(I)} f(x)=\lim _{x \rightarrow r(J)} g(t)$ in R_{∞}, where $r(I)$ and $r(J)$ are the right endpoints of the intervals I and J in R_{∞}. Show that near these right endpoints f and g are reparametrisations of each other, that is there are subintervals I^{\prime} of I and J with $r(I)=r\left(I^{\prime}\right), r(J)=r\left(J^{\prime}\right)$ and a strictly increasing definable bijection $h: I^{\prime} \rightarrow J^{\prime}$ such that $f(x)=g(h(x))$ for all $s \in I^{\prime}$.

Note that since $f(I) \subset G(J)$ and since their right limits agree, either f, g are both increasing or both decreasing.(0.5 point) Since f, g preserve orders, we know that they map intervals to intervals and are locally continuous. Now consider the $\operatorname{limit}_{\lim _{x \rightarrow r(I)}} f(x)=M$. This means that we can take a small interval (a, M) which will then be mapped by f^{-1}, g^{-1} into intervals $\left(f^{-1}(a), r(I)\right),\left(g^{-1}(a), r(j)\right)$ because we can take a close enough to M such that f, g are continuous on $\left(f^{-1}(a), r(I)\right),\left(g^{-1}(a), r(j)\right) .(0.5$ point $)$
We can now define our function

$$
h:\left(f^{-1}(a), r(I)\right) \rightarrow\left(g^{-1}(a), r(I) \quad x \mapsto g^{-1}(f(x)) .\right.
$$

Note that g^{-1} and f are order preserving, so h must preserve orders as well, therefore h is injective, continuous and maps intervals to intervals (0.5 points). In particular h is surjective since $h\left(f^{-1}(a)\right)=$ $g^{-1}(a)$ and $\lim _{x \rightarrow r(I)} h(x)=\lim _{x \rightarrow M} g^{-1}(x)=r(J)$. This implies that h is a bijection, and since it is order preserving it is both continuous and open, so an homeomorphism (0.5 point).

