Tame Topology Seminar - Homework 4

Pol van Hoften

November 10, 2014

Exercise 1(3 points. Let $A \in \mathbb{R}^2$ be definable such that A_x is finite for each $x \in \mathbb{R}$. Show that there are points $a_1 < \cdots < a_k$ such that the intersection of A with each vertical strip $(a_i, a_{i+1}) \times \mathbb{R}$ has the form $\Gamma(f_{i,1}) \cup \cdots \cup \Gamma(f_{i,n(i)})$ for certain definable continuous functions $f_{i,j} : (a_i, a_{i+1}) \to \mathbb{R}$ with $f_{i,1}(x) < \cdots < f_{i,n(i)}(x)$ for each $x \in (a_i, a_{i+1})$, we have set $a_0 = -\infty$ and $a_{k+1} = +\infty$. (Hint: use the functions defined in the proof of the finiteless lemma and then apply the monotonicity theorem)

The finiteness lemma gives us a number $N \in \mathbb{N}$ such that $|A_x| < N$ for all N (0.5 point). We can now define functions f_1, \dots, f_N as in the proof of the finiteness lemma (0.5 point).

 $f_i: \{x \in R: |A_x| \ge i\}, \quad x \mapsto \text{ ith element of } A_x.$

We notice that the domain of f_i is definable for every *i* and the functions f_i are definable as well. This means that we can write the domain of a function f_i as the finite union of intervals and points $\bigcup_{j=1}^{n(i)} I_{i,j} \cup \{x_i, \dots, x_{n(i)} \ (0.5 \text{ point})\}$. Restricting f_i to one of these sub-intervals $I_{i,j}$ we find a decomposition of $I_{i,j}$ into intervals by the monotonicity theorem such that f is continuous on each of these sub-intervals (0.5 point). We shall call these new intervals $I_{i,j}$ again, by abuse of notation. Doing this for every *i*, we obtain a big (but finite) number of intervals. Now using the fact that the intersection of an interval is either empty or a new interval, we take all possible intersections of all these intervals. To be precise we consider the collection (where we index the intervals by 1 up to m)

$$\mathcal{B} = \{\bigcup_{r=1}^{k} \bigcap_{\sigma \in S_k} I_{\sigma r} \subset A : 1 \le k \le n\},\$$

where we consider all possible intersections of k different intervals (using permutation notation). If we again numerate these intervals $I_1, \dots I_n$ then on every interval, the function f_i is either continuous or not defined, so we can write $(I_j \times R) \cap A = \Gamma(f_i) \cup \dots \cup \Gamma(f_{t(j)})$, where t(j) is maximal such that $f_{t(j)}$ is defined on I_j .

Now note that the collection \mathcal{B} still covers A so we are done. (1 point for the last part of the argument, there are many ways to do this but half a point will be subtracted if no refinement argument is considered).

We will now use the previous exercise to show that if A has infinite fibers, its boundary consists of graphs of continuous definable functions.

Exercise 2 (1 point) Let $A \in \mathbb{R}^n$ be definable such that A_x is infinite for each $x \in \mathbb{R}$. Show that there are points $a_1 < \cdots < a_k$ such that the intersection of $B_{d2}(A) := \{(x,r) \in A : r \in bd(A_x)\}$ with each vertical strip $(a_i, a_{i+1}) \times \mathbb{R}$ has the form $\Gamma(f_{i,1}) \cup \cdots \cup \Gamma(f_{i,n(i)})$ for certain definable continuous functions

 $f_{i,j}: (a_i, a_{i+1}) \to R \text{ with } f_{i,1}(x) < \cdots < f_{i,n(i)}(x) \text{ for each } x \in (a_i, a_{i+1}), \text{ we have set } a_0 = -\infty \text{ and } a_{k+1} = +\infty.$

It is a result of chapter 1 that the boundary of a definable set is finite (0.5 point), this implies that $B_{d2}(A)$ has finite fibers and so we can apply exercise (1) to obtain the desired result (0.5 point).

Exercise 3 (2 points) Let $f : [a,b] \to R$ be continuous and definable. Show that f takes a maximum and a minimum value on [a,b].

The monotonicity theorem gives us points a, a_1, \dots, a_k, b such that f is constant or strictly monotone on the subintervals (0.5 point).

We know that on every sub-interval (a_i, a_{i+1}) , the function f is either constant or strictly monotone, which means that the maximum and minimum value it takes on $[a_i, a_{i+1}]$, it must take in the endpoints (1 point).

Globally this means that $\max_{x \in [a,b]} f(x) = \max\{f(a), f(a_1), \dots, f(a_k), f(b)\}$. and the same for the minimum, therefore the maximum/minimum exists (0.5 point).

Exercise 4 (2 points) Let I and J be intervals and $f: I \to R$ and $g: J \to R$ strictly monotone definable functions such that $f(I) \subset g(J)$ and $\lim_{x\to r(I)} f(x) = \lim_{x\to r(J)} g(t)$ in R_{∞} , where r(I) and r(J) are the right endpoints of the intervals I and J in R_{∞} . Show that near these right endpoints f and g are reparametrisations of each other, that is there are subintervals I' of I and J with r(I) = r(I'), r(J) = r(J') and a strictly increasing definable bijection $h: I' \to J'$ such that f(x) = g(h(x)) for all $s \in I'$.

Note that since $f(I) \subset G(J)$ and since their right limits agree, either f, g are both increasing or both decreasing. (0.5 point) Since f, g preserve orders, we know that they map intervals to intervals and are locally continuous. Now consider the limit $\lim_{x\to r(I)} f(x) = M$. This means that we can take a small interval (a, M) which will then be mapped by f^{-1}, g^{-1} into intervals $(f^{-1}(a), r(I)), (g^{-1}(a), r(j))$ because we can take a close enough to M such that f, g are continuous on $(f^{-1}(a), r(I)), (g^{-1}(a), r(j)). (0.5 \text{ point})$

We can now define our function

$$h: (f^{-1}(a), r(I)) \to (g^{-1}(a), r(I) \qquad x \mapsto g^{-1}(f(x)).$$

Note that g^{-1} and f are order preserving, so h must preserve orders as well, therefore h is injective, continuous and maps intervals to intervals (0.5 points). In particular h is surjective since $h(f^{-1}(a)) = g^{-1}(a)$ and $\lim_{x\to r(I)} h(x) = \lim_{x\to M} g^{-1}(x) = r(J)$. This implies that h is a bijection, and since it is order preserving it is both continuous and open, so an homeomorphism (0.5 point).