Tame Topology and O-minimal Structures-Dimensions, Homework Set

Tingxiang Zou (tingxiangzou@gmail.com)

In the following exercises we fix an O-minimal structure (R, <, S):

Exercise 1: (3 points) (Dimensions of Sets from Definable Families)

Let A and B be definable subsets of R^{m+n} , with A non-empty. Assume that, for every $a \in R^m$, dim $(B_a) < \dim(A_a)$. Prove that dim $B < \dim A$. (For definition of A_a and B_a , check p.59 (3.1).)

Solution: By (1.6)Corollary (i), dim $B = \max_{0 \le d \le n}(\dim(B(d)) + d)$. Let d' the value that reaches the maximum, i.e., dim $B = \dim(B(d')) + d'$. For any $a \in B(d')$, we have $d' = \dim(B_a) < \dim(A_a)$. Thus, $B(d') \subseteq \bigcup_{d'+1 \le d \le n} A(d)$. Therefore, dim $B(d') \le \max_{d'+1 \le d \le n} \dim(A(d))$. And dim $B = \dim B(d') + d' \le \max_{d'+1 \le d \le n} \dim(A(d)) + d' < \max_{d'+1 \le d \le n} (\dim(A(d)) + d) \le \dim A$.

Exercise 2: (Local Dimension, p.69 (1.17) Exercise 2, 3, 4.)

1. (2 points) Let $A \subseteq \mathbb{R}^m$ be definable and $a \in \mathbb{R}^m$. Show there is a number $d \in \{-\infty, 0, \cdots, \dim A\}$ such that there is an open box $U \subseteq \mathbb{R}^m$ with $a \in U$, and for all open box $V \subseteq \mathbb{R}^m$, if $a \in V$ and $V \subseteq U$, then $\dim(V \cap A) = d$.

Remark: The number d defined by this property is called the **local dimension of** A at a, notation $\dim_a(A)$. Note that $\dim_a(A) = -\infty$ iff $a \notin cl(A)$.

Solution: For any $i \in \{-\infty, 0, \dots, \dim A\}$, let $B_i = \{U \subseteq R^m : U \text{ is an open box, } a \in U, \dim(U \cap A) = i\}$. Let d be the minimum i such that $B_i \neq \emptyset$. (Such i exists since for any open box U with $a \in U$, $\dim(U \cap A) \leq \dim A$, hence it cannot be the case that all B_i are empty.) Pick any $U \in B_d$, for all open box $V \subseteq U$ with $a \in V$, $\dim(V \cap A) \leq \dim(U \cap A) = d$ (since $V \cap A \subseteq U \cap A$). Let $d' = \dim(V \cap A)$, then $d' \geq d$, for $B_{d'} \neq \emptyset$. Therefore, $\dim(V \cap A) = \dim(U \cap A) = d$.

2. (2 points) Show that if $A \subseteq \mathbb{R}^m$ is a *d*-dimensional cell, then $\dim_a(A) = d$ for all $a \in cl(A)$.

Solution: Note that for any $a \in cl(A)$, for any open box $U \subseteq R^m$ with $a \in U$,

 $U \cap A \neq \emptyset$. Let $p_i : \mathbb{R}^m \to \mathbb{R}^d$ defined as in (2.7), then $p_i : A \to p_i(A)$ is a homeomorphism. Since $U \cap A$ is open and nonempty in A, $p_i(U \cap A)$ must also be open and nonempty in $p_i(A)$. Note that $p_i(A)$ is open in \mathbb{R}^d , hence, $p_i(U \cap A)$ is also open in \mathbb{R}^d , together with nonemptiness, we conclude that $p_i(U \cap A)$ contains an open box in \mathbb{R}^d . Therefore, $\dim(U \cap A) = \dim(p_i(U \cap A)) = d$.

3. (3 points) Let $A \subseteq \mathbb{R}^m$ be a definable set and $d \in \{0, \dots, \dim A\}$. Show that the set $\{a \in \mathbb{R}^m : \dim_a(A) \ge d\}$ is a definable closed subset of cl(A). (Hint: apply cell decomposition theorem to cl(A), then show the set $\{a \in \mathbb{R}^m : \dim_a(A) \ge d\}$ is the closure of a finite union of cells.)

Show also that if $A \neq \emptyset$, then dim $(\{a \in cl(A) : dim_a(A) < d\}) < d$.

Solution: (I am sorry, I think I gave a misleading hint, it would be better to apply cell decomposition to A rather than cl(A), I will give both the answers.) (**Apply to cl(A):**) Let \mathcal{D} be a finite partition of cl(A) into cells. Let

$$B = \bigcup \{ C \in \mathcal{D} : \dim C \ge d \}.$$

Clearly cl(B) is a definable closed subset of cl(A). Claim:

$$\{a \in R^m : \dim_a(A) \ge d\} = \operatorname{cl}(B).$$

For any $a \in cl(B)$, $a \in cl(C)$ for some $C \in \mathcal{D}$ with dim $C \geq d$. For any open box $U \subseteq R^m$, $a \in U$, dim $(U \cap cl(A)) \geq dim(U \cap C) = dim C \geq d$. And since for any open box $U \subseteq R^m$, $cl(A) = cl(A \cap U) \cup cl(A \cap (R^m \setminus U))$ and $cl(A \cap (R^m \setminus U)) \subseteq cl(R^m \setminus U) = R^m \setminus U$, hence

$$U \cap \operatorname{cl}(A) = (\operatorname{cl}(A \cap U) \cap U) \cup (\operatorname{cl}(A \cap (R^m \setminus U)) \cap U) = \operatorname{cl}(U \cap A) \cap U \subseteq \operatorname{cl}(U \cap A).$$

Therefore, for any box $U \subseteq \mathbb{R}^m$, $a \in U$, $d \leq \dim(U \cap \operatorname{cl}(A)) \leq \dim(\operatorname{cl}(U \cap A)) = \dim(U \cap A)$ (last equality by Theorem (1.8)). We conclude that $\dim_a(A) \geq d$.

On the other hand, for all $a \in cl(A)$, if $a \notin cl(B)$, then there is an open box $U \subseteq \mathbb{R}^n$, such that $a \in U$ and $U \cap B = \emptyset$. Note that $U \cap A \subseteq cl(A) \setminus B$ and $cl(A) \setminus B$ is a finite union of cells with dimension less than d. Hence,

 $\dim(U \cap A) \leq \dim(\operatorname{cl}(A) \setminus B) < d$. And we conclude, $\dim_a(A) < d$.

From what we have proved before,

$$\{a \in \operatorname{cl}(A) : \dim_a(A) < d\} = \operatorname{cl}(A) \setminus \{a \in R^m : \dim_a(A) \ge d\}$$

is definable. And

$$\{a \in \operatorname{cl}(A) : \dim_a(A) < d\} = \operatorname{cl}(A) \setminus \operatorname{cl}(B) \subseteq \operatorname{cl}(A) \setminus B.$$

Hence, $\dim(\{a \in \operatorname{cl}(A) : \dim_a(A) < d\}) \leq \dim(\operatorname{cl}(A) \setminus B) < d$. (You can also prove that for any $a \in \operatorname{cl}(A)$, $\dim_a(A) = \dim_a(\operatorname{cl}(A))$, by using $\dim(U \cap \operatorname{cl}(A)) \leq \dim(\operatorname{cl}(U \cap A)) = \dim(U \cap A)$ for open box U.)

(Apply to A:) Let \mathcal{D} be a finite partition of A into cells. Let

$$B = \bigcup \{ C \in \mathcal{D} : \dim C \ge d \}.$$

Clearly cl(B) is a definable closed subset of cl(A). Claim:

$$\{a \in R^m : \dim_a(A) \ge d\} = \operatorname{cl}(B).$$

For any $a \in cl(B)$, $a \in cl(C)$ for some $C \in \mathcal{D}$ with $\dim C \geq d$. For any open box $U \subseteq R^m$, $a \in U$, $\dim(U \cap A) \geq \dim(U \cap C) = \dim C \geq d$. We conclude that $\dim_a(A) \geq d$.

On the other hand, for all $a \in cl(A)$, if $a \notin cl(B)$, then there is an open box $U \subseteq \mathbb{R}^n$, such that $a \in U$ and $U \cap B = \emptyset$. Note that $U \cap A \subseteq A \setminus B$ and $A \setminus B$ is a finite union of cells with dimension less than d. Hence,

 $\dim(U \cap A) \leq \dim(A \setminus B) < d$. And we conclude, $\dim_a(A) < d$.

From what we have proved before,

$$\{a \in \operatorname{cl}(A) : \dim_a(A) < d\} = \operatorname{cl}(A) \setminus \{a \in R^m : \dim_a(A) \ge d\}$$

is definable. And

$$\{a \in \operatorname{cl}(A) : \dim_a(A) < d\} = \operatorname{cl}(A) \setminus \operatorname{cl}(B) = (\bigcup_{C \in \mathcal{D}} \operatorname{cl}(C)) \setminus (\bigcup_{C \in \mathcal{D}, \dim(C) \ge d} \operatorname{cl}(C)) = \bigcup_{C \in \mathcal{D}, \dim(C) < d} \operatorname{cl}(C)$$

Hence, dim $(\{a \in cl(A) : \dim_a(A) < d\}) \le \dim(\bigcup_{C \in \mathcal{D}, \dim(C) < d} cl(C)) = \max\{dim(cl(C)) : C \in \mathcal{D}, \dim(C) < d\} = \max\{dim(C) : C \in \mathcal{D}, \dim(C) < d\} < d.$