Tame Topology and O-minimal Structures,

Euler Characteristic, homework set model solutions
Due, 05-12-2014
Niels Voorneveld (n.f.w.voorneveld@students.uu.nl)
We take an o-minimal structure $(R,<, S)$.

1 Cell decomposition (5 points)

Take a cell $C \subset R^{m}$. This exercise tackles the similarity between the definition of a cell decomposition of R^{m} and the definition of a decomposition of a cell. The definition of a decomposition of a cell is given on page 70 .
a. (2 points) Prove that that if \mathbf{D} is a cell decomposition of R^{m} that partitions C, than $\mathbf{D} \mid C=\{E: E \epsilon \mathbf{D}, E \subseteq C\}$ is a decomposition of C.

We use induction on m. For $m=1$ the result follows from the definitions.
Assume that the statement is correct for all dimensions below $m>1$. Take C a cell in R^{m} and \mathbf{D} a decomposition of R^{m} partitioning C. Take π to be the projection of R^{m} to it's first $m-1$ coordinates. Note that by the definition of decompositions, $\pi(\mathbf{D})$ is a decomposition of R^{m-1}, which by definition means it partitions R^{m-1}. So $\pi(\mathbf{D} \mid C)$ is precisely the elements in the partition $\pi(\mathbf{D})$ that originate form $\mathbf{D} \mid C$. So it is a partition of $\pi(C)$.
Now $\pi(\mathbf{D} \mid C)=\pi(\{A \epsilon \mathbf{D}: A \subset C\})=\{\pi(A): A \in \mathbf{D} \& A \subset C\}=\{A: \pi(A) \epsilon \pi(\mathbf{D}) \& A \subset$ $\pi(C)\}=\pi(\mathbf{D}) \mid \pi(C)$. Hence, we have that $\pi(\mathbf{D})$ is a decomposition of R^{m-1} which partitions $\pi(C)$. So by the induction hypothesis, $\pi(\mathbf{D}) \mid \pi(C)$ is a decomposition of $\pi(C)$. Hence by the inductive definition of decompositions of cells we get that $\mathbf{D} \mid C$ is a decomposition of C.
b. (3 points) Prove that for any decomposition \mathbf{D} of C, there is a cell decomposition of R^{m} that restricts to \mathbf{D} on C.

We use induction on m.
For $m=1$, take a cell C in R with a decomposition \mathbf{D}.
If C is a point $C=\{c\}$, then it's decomposition must be $\mathbf{D}=\{\{c\}\}$. So we can use the $\mathbf{E}:=\{(-\infty, c),\{c\},(c, \infty)\}$, which is a decomposition of R that restricts to \mathbf{D} on C.
If C is an interval $C=(\alpha, \beta)$ with $\alpha, \beta \in R_{\infty}$, we can use the decomposition of R given by $\mathbf{E}:=\mathbf{D} \cup\{(-\infty, \alpha),\{\alpha\}\} \cup\{\{\beta\},(\beta, \infty)\}$. The second part should be empty if $\alpha=-\infty$ and the third part if $\beta=\infty$. Either way, \mathbf{E} is the desired decomposition.

Now assume for $m>1$ we have that the statement is correct in all dimensions lower than m. Take C a cell in R^{m} and \mathbf{D} a decomposition of C. Take π the projection of R^{m} to the first $m-1$ coordinates. $\pi(\mathbf{D})$ is a decomposition of $\pi(C)$. So we can use the induction hypothesis to find \mathbf{E} a decomposition of R^{m-1} which partitions $\pi(C)$.
Case 1: C is a $\left(i_{1}, \ldots, i_{m-1}, 0\right)$-cell. So there is a continuous definable function $f: \pi(C) \rightarrow R$ such that $C=\Gamma(f)$. Now define $\mathbf{F}:=\mathbf{D} \cup\{(-\infty, f) \mid F: F \epsilon \pi(\mathbf{D})\} \cup\{(f, \infty) \mid F: F \epsilon \pi(\mathbf{D})\} \cup$ $\left\{F \times R: F \epsilon \mathbf{E} \& F \subset R^{m} \backslash \pi(C)\right\}$. A quick check yields $\pi(\mathbf{F})=\mathbf{E}$, and that it partitions C.
Case 2: C is a $\left(i_{1}, \ldots, i_{m-1}, 0\right)$-cell. So there is are continuous definable functions $f, g: \pi(C) \rightarrow$ R s.t $C=(f, g)_{\pi(C)}, f<g$. Now we define $\mathbf{F}:=\mathbf{D} \cup\{(-\infty, f)|F, \Gamma(f)| F, \Gamma(g)|F,(g, \infty)| F$: $F \epsilon \pi(\mathbf{D})\} \cup\left\{F \times R: F \epsilon \mathbf{E} \& F \subset R^{m} \backslash \pi(C)\right\}$. If f is the constant $-\infty$ map, all parts with f must be removed. Same for $g=\infty$. A quick check yields that this partition is a decomposition of R^{m} which partitions C and restricts to \mathbf{D} on C.

Points:

1 for the induction basis
1 for the induction step in case that C is a ($\ldots, 0$)-cell.
1 for the induction step in case that C is a (..., 1)-cell.

2 Closure (5 points)

Prove that the Euler characteristic of the closure of a bounded cell $C \subset R^{m}$ is always 1 . Bounded means there is a box $B=\left[a_{0}, b_{0}\right] \times\left[a_{1}, b_{1}\right] \times \ldots \times\left[a_{m}, b_{m}\right]$ with $a_{i}, b_{i} \epsilon R$ for all i, such that $C \subset B$.

Hint: Use induction and consider the cases $i_{m}=0$ and $i_{m}=1$ separately. Use proposition 2.4.

We use induction on m. Let $B=\left[a_{0}, b_{0}\right] \times\left[a_{1}, b_{1}\right] \times \ldots \times\left[a_{m}, b_{m}\right]$ be the bounding box of C.
If $m=1, C$ is either a point $\{c\}$ or an interval $\left(c_{1}, c_{2}\right)$ where c_{1} and c_{2} are in R since C is bounded. So its closure is either a point $\{c\}$ or a closed interval $\left[c_{1}, c_{2}\right]=\left\{c_{1}\right\} \cup\left(c_{1}, c_{2}\right) \cup\left\{c_{2}\right\}$. In both cases, the Euler Characteristic is 1 .

Now take $m>1$ and assume that for all dimension lower than an m, we have that all bounded cells have a closure with Euler Characteristic 1. Take $\pi: R^{m} \rightarrow R^{m-1}$, the projection to the first $m-1$ coordinates. First we prove that $\pi(c l(C)) \subset \operatorname{cl}(\pi(C))$. The converse will be proven in the separate cases.

If $x \epsilon \pi(c l(C))$, then there is a $y \epsilon R$ such that $(x, y) \epsilon c l(C)$, hence for any open box in R^{m} containing (x, y) we have that it's intersection with C is non-empty. So for any open box U in R^{m-1} containing x, we have that $U \times R$ has a non-empty intersection with C, so $U=\pi(U \times R)$ has a non-empty intersection with $\pi(C)$. So $x \epsilon c l(\pi(C))$.

If C is an $\left(i_{1}, \ldots, i_{m-1}, 0\right)$-cell, then there is a continuous definable function $f: \pi(C) \rightarrow R$ s.t. $C=\Gamma(f)$. So $c l(C)=\Gamma(f)$. Take $x=\left(x_{1}, x_{2}, \ldots, x_{m-1}\right) \epsilon c l(\pi(\Gamma(f)))$, we want to define the fiber $c l(\Gamma(f))_{x}$ by using a limit of f to x using boxes around x. The limit of f to x is the limit of the images of increasingly smaller boxes, both the supremum and the infimum of those increasingly smaller boxes go to that limit. Define $b_{x}: B_{x}=\left(-\infty, x_{1}\right) \times$ $\ldots \times\left(-\infty, x_{m-1}\right) \times\left(x_{1}, \infty\right) \times \ldots \times\left(x_{m-1}, \infty\right) \rightarrow \mathbf{P}\left(R^{m-1}\right)$ by $b\left(d_{1}, . ., d_{m-1}, e_{1}, \ldots, e_{m-1}\right)=$ $\left(d_{1}, e_{1}\right) \times \ldots \times\left(d_{m-1}, e_{m-1}\right)$. So the image of b_{x} is all open boxes containing x. Now define $s(x):=\inf \left(\sup \left(f\left(b_{x}\left(B_{x}\right) \cap \pi(C)\right)\right)\right.$, so the infimum of the supremum of the images of all open boxes containing x. This element is definable by construction. We also define $i(x):=\sup \left(\inf \left(f\left(b_{x}\left(B_{x}\right) \cap \pi(C)\right)\right)\right.$.
For $y \epsilon R$, if $(x, y) \epsilon c l(\Gamma(f))$, then any open box U around (x, y) has non-empty intersection with $C . \pi(U) \epsilon b_{x}\left(B_{x}\right)$. If $y>s(x)$, we can find an open box containing (x, y) disjoint from $c l(\Gamma(f))$, same for $y<i(x)$. Hence $y \epsilon[i(x), s(x)]$.
If $y \in[i(x), s(x)]$, then y is in any image of a box containing x, so $(x, y) \epsilon c l(\Gamma(f))$. Hence $c l(\Gamma(f))_{x}=[i(x), s(x)]$.
So, for all $x \epsilon c l(\pi(\Gamma(f)))$, we have that the fiber $\Gamma(f)_{x}$ is a closed interval (or a point if $s(x)=i(x))$ and hence has Euler characteristic 1. Also note that we also have $\operatorname{cl}(\pi(C)) \subset$ $\pi(c l(C))$. So $c l(\pi(C))=\pi(c l(C))$. Hence we can use Corollary 2.11 to conclude that with $E\left(c l(C)_{x}\right)=1$ we get that $E(c l(C))=E(\pi(c l(C))) * 1=E(c l(\pi(C)))=1$, where the last step follows from the induction hypothesis.

A different way to proof this case is to try and extend the map f to a map defined on the entirety of $\operatorname{cl}(\pi(C))$, mapping it bijectively into cl (C). This can be done by either using properties of the map π and using an inverse, or by calculating limits the same way as is done in the proof of proposition 2.13: Using monotonicity and coordinate permutation to study the behaviour of f near the edge and then defining the limit on the edge as either the supremum or infimum.
Once the map F has been constructed, one can use Proposition 2.4 to conclude that $1=$ $E(c l(\pi(C)))=E(\Gamma(F))=E(c l(C))$

If C is an $\left(i_{1}, \ldots, i_{m-1}, 1\right)$-cell, then there are continuous definable functios $f, g: \pi(C) \rightarrow R$ with $f<g$ s.t. $C=(f, g)_{\pi(C)}$. Note that $[f, g]_{\pi(C)} \subset \operatorname{cl}(C)$, hence $\Gamma(f) \subset \operatorname{cl}(C)$ and $\Gamma(g) \subset \operatorname{cl}(C)$. Also note that taking the closure of the closure does not change anything, so we get that $c l(\Gamma(f)) \subset c l(C)$ and $c l(\Gamma(g)) \subset c l(C)$. Now take $x \epsilon c l(\pi(C))$. The same way
as before, define $s(x):=\inf \left(\sup \left(g\left(b_{x}\left(B_{x}\right) \cap \pi(C)\right)\right)\right.$ and $i(x):=\sup \left(i n f\left(f\left(b_{x}\left(B_{x}\right) \cap \pi(C)\right)\right)\right.$. These exist, so we at least get $\operatorname{cl}(\pi(C)) \subset \pi(c l(C))$ hence $\operatorname{cl}(\pi(C))=\pi(c l(C))$. More importantly, $\operatorname{cl}(C)_{x}=[i(x), s(x)]$. Proof:
If $y \epsilon c l(C)_{x}$, then $(x, y) \epsilon c l(C)$. So any open box U containing (x, y) has non-empty intersection with C. So U contains a point $\left(x_{1}, y_{1}\right)$ which is in C. So $g\left(x_{1}\right)<y_{1}<f\left(x_{1}\right)$. So $y \leq \sup (U \cap C)<=\sup (g(\pi(U) \cap \pi(C))$ and the same way $y \geq i f(f(\pi(U) \cap \pi(C))$. This is for all $U \epsilon b_{x}\left(B_{x}\right)$, so $i(x) \leq y \leq s(x)$.
If $y \epsilon[i(x), s(x)]$, then any box $U \epsilon b_{x}\left(B_{x}\right)$ has $y \epsilon[f, g]_{U}$, so $y \epsilon c l(C)_{x}$.
So $c l(C)_{x}=[i(x), s(x)]$.
We can conclude again that the fiber $\operatorname{cl}(C)_{x}$ is a closed interval or a point, hence it has Euler characteristic 1. So the same way as before we can conclude that $E(c l(C))=E(\pi(c l(C))) *$ $1=E(c l(\pi(C)))=1$.

Using the alternative route, we can extend both f and g to maps F and G on $\operatorname{cl}(\pi(C))$. One can check that the closure of C is $C \cup \Gamma(F) \cup \Gamma(G) \cup(F, G)_{c l(\pi(C)) \backslash \pi(C)}$. This will depend on the amount of time F and G are equal. Calculating the Euler characteristic will yield a one.

Points:

1 for the induction basis
2 for the induction step in case that C is a $(\ldots, 0)$-cell.
2 for the induction step in case that C is a ($\ldots, 1$)-cell.
The 2 points in the cases are distributed differently for different proofs:
In the model proof it will be: 1 for $\pi(c l(C))=c l(\pi(C)), 1$ for fiber has characteristic 1 .

