Tame Topology and O-minimal Structures, Euler Characteristic, homework set model solutions Due, 05-12-2014

Niels Voorneveld (n.f.w.voorneveld@students.uu.nl)

We take an o-minimal structure (R, <, S).

1 Cell decomposition (5 points)

Take a cell $C \subset \mathbb{R}^m$. This exercise tackles the similarity between the definition of a cell decomposition of \mathbb{R}^m and the definition of a decomposition of a cell. The definition of a decomposition of a cell is given on page 70.

a. (2 points) Prove that that if **D** is a cell decomposition of \mathbb{R}^m that partitions C, than $\mathbf{D}|C = \{E : E \in \mathbf{D}, E \subseteq C\}$ is a decomposition of C.

We use induction on m. For m = 1 the result follows from the definitions.

Assume that the statement is correct for all dimensions below m > 1. Take C a cell in \mathbb{R}^m and \mathbf{D} a decomposition of \mathbb{R}^m partitioning C. Take π to be the projection of \mathbb{R}^m to it's first m-1 coordinates. Note that by the definition of decompositions, $\pi(\mathbf{D})$ is a decomposition of \mathbb{R}^{m-1} , which by definition means it partitions \mathbb{R}^{m-1} . So $\pi(\mathbf{D}|C)$ is precisely the elements in the partition $\pi(\mathbf{D})$ that originate form $\mathbf{D}|C$. So it is a partition of $\pi(C)$.

Now $\pi(\mathbf{D}|C) = \pi(\{A\epsilon\mathbf{D} : A \subset C\}) = \{\pi(A) : A\epsilon\mathbf{D}\&A \subset C\} = \{A : \pi(A)\epsilon\pi(\mathbf{D})\&A \subset \pi(C)\} = \pi(\mathbf{D})|\pi(C)$. Hence, we have that $\pi(\mathbf{D})$ is a decomposition of R^{m-1} which partitions $\pi(C)$. So by the induction hypothesis, $\pi(\mathbf{D})|\pi(C)$ is a decomposition of $\pi(C)$. Hence by the inductive definition of decompositions of cells we get that $\mathbf{D}|C$ is a decomposition of C.

b. (3 points) Prove that for any decomposition \mathbf{D} of C, there is a cell decomposition of \mathbb{R}^m that restricts to \mathbf{D} on C.

We use induction on m.

For m = 1, take a cell C in R with a decomposition **D**.

If C is a point $C = \{c\}$, then it's decomposition must be $\mathbf{D} = \{\{c\}\}\)$. So we can use the $\mathbf{E} := \{(-\infty, c), \{c\}, (c, \infty)\}\)$, which is a decomposition of R that restricts to \mathbf{D} on C.

If C is an interval $C = (\alpha, \beta)$ with $\alpha, \beta \epsilon R_{\infty}$, we can use the decomposition of R given by $\mathbf{E} := \mathbf{D} \cup \{(-\infty, \alpha), \{\alpha\}\} \cup \{\{\beta\}, (\beta, \infty)\}$. The second part should be empty if $\alpha = -\infty$ and the third part if $\beta = \infty$. Either way, **E** is the desired decomposition.

Now assume for m > 1 we have that the statement is correct in all dimensions lower than m. Take C a cell in \mathbb{R}^m and \mathbf{D} a decomposition of C. Take π the projection of \mathbb{R}^m to the first m-1 coordinates. $\pi(\mathbf{D})$ is a decomposition of $\pi(C)$. So we can use the induction hypothesis to find \mathbf{E} a decomposition of \mathbb{R}^{m-1} which partitions $\pi(C)$.

Case 1: C is a $(i_1, ..., i_{m-1}, 0)$ -cell. So there is a continuous definable function $f : \pi(C) \to R$ such that $C = \Gamma(f)$. Now define $\mathbf{F} := \mathbf{D} \cup \{(-\infty, f) | F : F \epsilon \pi(\mathbf{D})\} \cup \{(f, \infty) | F : F \epsilon \pi(\mathbf{D})\} \cup \{F \times R : F \epsilon \mathbf{E} \& F \subset R^m \setminus \pi(C)\}$. A quick check yields $\pi(\mathbf{F}) = \mathbf{E}$, and that it partitions C. Case 2: C is a $(i_1, ..., i_{m-1}, 0)$ -cell. So there is are continuous definable functions $f, g : \pi(C) \to R$

R s.t $C = (f, g)_{\pi(C)}, f < g$. Now we define $\mathbf{F} := \mathbf{D} \cup \{(-\infty, f) | F, \Gamma(f) | F, \Gamma(g) | F, (g, \infty) | F : F \epsilon \pi(\mathbf{D})\} \cup \{F \times R : F \epsilon \mathbf{E} \& F \subset R^m \setminus \pi(C)\}$. If f is the constant $-\infty$ map, all parts with f must be removed. Same for $g = \infty$. A quick check yields that this partition is a decomposition of R^m which partitions C and restricts to \mathbf{D} on C.

Points:

1 for the induction basis

- 1 for the induction step in case that C is a (..., 0)-cell.
- 1 for the induction step in case that C is a (..., 1)-cell.

2 Closure (5 points)

Prove that the Euler characteristic of the closure of a bounded cell $C \subset R^m$ is always 1. Bounded means there is a box $B = [a_0, b_0] \times [a_1, b_1] \times ... \times [a_m, b_m]$ with $a_i, b_i \in R$ for all i, such that $C \subset B$.

Hint: Use induction and consider the cases $i_m = 0$ and $i_m = 1$ separately. Use proposition 2.4.

We use induction on *m*. Let $B = [a_0, b_0] \times [a_1, b_1] \times ... \times [a_m, b_m]$ be the bounding box of *C*.

If m = 1, C is either a point $\{c\}$ or an interval (c_1, c_2) where c_1 and c_2 are in R since C is bounded. So its closure is either a point $\{c\}$ or a closed interval $[c_1, c_2] = \{c_1\} \cup (c_1, c_2) \cup \{c_2\}$. In both cases, the Euler Characteristic is 1.

Now take m > 1 and assume that for all dimension lower than an m, we have that all bounded cells have a closure with Euler Characteristic 1. Take $\pi : \mathbb{R}^m \to \mathbb{R}^{m-1}$, the projection to the first m - 1 coordinates. First we prove that $\pi(cl(C)) \subset cl(\pi(C))$. The converse will be proven in the separate cases.

If $x \epsilon \pi(cl(C))$, then there is a $y \epsilon R$ such that $(x, y) \epsilon cl(C)$, hence for any open box in \mathbb{R}^m containing (x, y) we have that it's intersection with C is non-empty. So for any open box U in \mathbb{R}^{m-1} containing x, we have that $U \times R$ has a non-empty intersection with C, so $U = \pi(U \times R)$ has a non-empty intersection with $\pi(C)$. So $x \epsilon cl(\pi(C))$.

If C is an $(i_1, ..., i_{m-1}, 0)$ -cell, then there is a continuous definable function $f : \pi(C) \to R$ s.t. $C = \Gamma(f)$. So $cl(C) = \Gamma(f)$. Take $x = (x_1, x_2, ..., x_{m-1})\epsilon cl(\pi(\Gamma(f)))$, we want to define the fiber $cl(\Gamma(f))_x$ by using a limit of f to x using boxes around x. The limit of f to x is the limit of the images of increasingly smaller boxes, both the supremum and the infimum of those increasingly smaller boxes go to that limit. Define $b_x : B_x = (-\infty, x_1) \times ... \times (-\infty, x_{m-1}) \times (x_1, \infty) \times ... \times (x_{m-1}, \infty) \to \mathbf{P}(R^{m-1})$ by $b(d_1, ..., d_{m-1}, e_1, ..., e_{m-1}) = (d_1, e_1) \times ... \times (d_{m-1}, e_{m-1})$. So the image of b_x is all open boxes containing x. Now define $s(x) := inf(sup(f(b_x(B_x) \cap \pi(C))))$, so the infimum of the supremum of the images of all open boxes containing x. This element is definable by construction. We also define $i(x) := sup(inf(f(b_x(B_x) \cap \pi(C))))$.

For $y \in R$, if $(x, y) \in cl(\Gamma(f))$, then any open box U around (x, y) has non-empty intersection with C. $\pi(U) \in b_x(B_x)$. If y > s(x), we can find an open box containing (x, y) disjoint from $cl(\Gamma(f))$, same for y < i(x). Hence $y \in [i(x), s(x)]$.

If $y \in [i(x), s(x)]$, then y is in any image of a box containing x, so $(x, y) \in cl(\Gamma(f))$. Hence $cl(\Gamma(f))_x = [i(x), s(x)]$.

So, for all $x \epsilon cl(\pi(\Gamma(f)))$, we have that the fiber $\Gamma(f)_x$ is a closed interval (or a point if s(x) = i(x)) and hence has Euler characteristic 1. Also note that we also have $cl(\pi(C)) \subset \pi(cl(C))$. So $cl(\pi(C)) = \pi(cl(C))$. Hence we can use Corollary 2.11 to conclude that with $E(cl(C)_x) = 1$ we get that $E(cl(C)) = E(\pi(cl(C))) * 1 = E(cl(\pi(C))) = 1$, where the last step follows from the induction hypothesis.

A different way to proof this case is to try and extend the map f to a map defined on the entirety of $cl(\pi(C))$, mapping it bijectively into cl(C). This can be done by either using properties of the map π and using an inverse, or by calculating limits the same way as is done in the proof of proposition 2.13: Using monotonicity and coordinate permutation to study the behaviour of f near the edge and then defining the limit on the edge as either the supremum or infimum.

Once the map F has been constructed, one can use Proposition 2.4 to conclude that $1 = E(cl(\pi(C))) = E(\Gamma(F)) = E(cl(C))$

If C is an $(i_1, ..., i_{m-1}, 1)$ -cell, then there are continuous definable functions $f, g : \pi(C) \to R$ with f < g s.t. $C = (f, g)_{\pi(C)}$. Note that $[f, g]_{\pi(C)} \subset cl(C)$, hence $\Gamma(f) \subset cl(C)$ and $\Gamma(g) \subset cl(C)$. Also note that taking the closure of the closure does not change anything, so we get that $cl(\Gamma(f)) \subset cl(C)$ and $cl(\Gamma(g)) \subset cl(C)$. Now take $x \in cl(\pi(C))$. The same way as before, define $s(x) := inf(sup(g(b_x(B_x) \cap \pi(C))))$ and $i(x) := sup(inf(f(b_x(B_x) \cap \pi(C))))$. These exist, so we at least get $cl(\pi(C)) \subset \pi(cl(C))$ hence $cl(\pi(C)) = \pi(cl(C))$. More importantly, $cl(C)_x = [i(x), s(x)]$. Proof:

If $y \epsilon cl(C)_x$, then $(x, y) \epsilon cl(C)$. So any open box U containing (x, y) has non-empty intersection with C. So U contains a point (x_1, y_1) which is in C. So $g(x_1) < y_1 < f(x_1)$. So $y \leq sup(U \cap C) <= sup(g(\pi(U) \cap \pi(C)))$ and the same way $y \geq if(f(\pi(U) \cap \pi(C)))$. This is for all $U \epsilon b_x(B_x)$, so $i(x) \leq y \leq s(x)$.

If $y \epsilon[i(x), s(x)]$, then any box $U \epsilon b_x(B_x)$ has $y \epsilon[f, g]_U$, so $y \epsilon cl(C)_x$. So $cl(C)_x = [i(x), s(x)]$.

We can conclude again that the fiber $cl(C)_x$ is a closed interval or a point, hence it has Euler characteristic 1. So the same way as before we can conclude that $E(cl(C)) = E(\pi(cl(C))) * 1 = E(cl(\pi(C))) = 1$.

Using the alternative route, we can extend both f and g to maps F and G on $cl(\pi(C))$. One can check that the closure of C is $C \cup \Gamma(F) \cup \Gamma(G) \cup (F,G)_{cl(\pi(C))\setminus \pi(C)}$. This will depend on the amount of time F and G are equal. Calculating the Euler characteristic will yield a one.

Points:

1 for the induction basis

2 for the induction step in case that C is a (..., 0)-cell.

2 for the induction step in case that C is a (..., 1)-cell.

The 2 points in the cases are distributed differently for different proofs: In the model proof it will be: 1 for $\pi(cl(C)) = cl(\pi(C))$, 1 for fiber has characteristic 1.