seminar o-minimal structures, solution to hand-in exercise 8 Felix Denis

1

a. Define $S=\left\{\left(x_{1}, \ldots, x_{d-1}, y\right) \mid y=x_{1} \vee \ldots \vee y=x_{d-1}\right\}$. Now let n be arbitrary. Next we pick distinct $y_{1}, \ldots, y_{n} \in R$ and let $F=\left\{y_{1}, \ldots, y_{n}\right\}$. We can easily verify that $\mathcal{C}=\left\{S_{x} \mid x \in R^{d-1}\right\}$ cuts out precisely the subsets F with strictly less than d elements. Hence $|\mathcal{C} \cap F|=p_{d}(n)$ and therefore $f_{\mathcal{C}}(n) \geq p_{d}(n)$. On the other hand, we have $f_{\mathcal{C}}(d)<2^{d}$, because every fiber S_{x} with $x \in R^{d-1}$ has cardinality $<d$, which implies that for a d-element set $F \subseteq R$ the entire set F itself is not cut out by \mathcal{C}. Hence we also have $f_{\mathcal{C}}(n) \leq p_{d}(n)$ for every n.
b. 1 We assume $(R,<, \mathcal{S})$ expands an ordered abelian group $(R,<,+, 0)$. For notational convenience we pick some $r>0$ and identify the subgroup of R generated by r with a copy of the ordered group of integers \mathbb{Z}. Define a sequence of "triangular" subsets of $R \times R$ as follows:

$$
T^{(n)}=\left\{(x, y) \mid y<n, x<\sum_{i=1}^{n} i, x+y>\sum_{i=1}^{n}\right\} i
$$

Define furthermore for every n the set $S^{(n)}=T^{(1)} \cup \cdots \cup T^{(n)}$, and lastly $\mathcal{D}^{(n)}=\left\{T_{x}^{(n)} \mid x \in R\right\}$ and $\mathcal{C}^{(n)}=\left\{S_{x}^{(n)} \mid x \in R\right\}$.
First note that for every n, the sets $T^{(n)}$ and $S^{(n)}$ are definable and every nonempty fiber $S_{x}^{(n)}$ with $x \in R$ coincides with $T_{x}^{(k)}$ where $0<k \leq n$ is the unique integer such that $\sum_{i=1}^{k-1} i<x<\sum_{i=1}^{k} i$. So $\mathcal{C}^{(n)}=\mathcal{D}^{(1)} \cup \cdots \cup \mathcal{D}^{(n)}$.
Second, for every $k \in \mathbb{N}$, if we have $0<y_{1}<\ldots<y_{m}<k$ and we put $F=\left\{y_{1}, \ldots, y_{m}\right\}$, then the nonempty subsets in $\mathcal{D}^{(k)} \cap F$ are precisely the sets of the form $\left\{y_{i}, y_{i+1}, \ldots, y_{m}\right\}$ with $1 \leq i<m$.
Now consider $S^{(m)}$, and let $n \geq m$ be arbitrary. Let y_{1}, \ldots, y_{n} such that $m>y_{1}>m-1>y_{2}>m-2>\ldots>y_{m-1}>1>y_{m}>y_{m+1} \ldots>y_{n}$ and let $F=\left\{y_{1}, \ldots, y_{n}\right\}$. Then using the previous remarks it is straightforward to show that the nonempty subsets in $\mathcal{C}^{(m)} \cap F$ are precisely the sets of the form $\left\{y_{i}, y_{i+1}, \ldots, y_{n-m+j}\right\}$ with $1 \leq i \leq n-m+j$ and $1 \leq j \leq m$. The total number of such sets is $n+(n-1)+\cdots+(n-m+1)=m n-\sum_{i=0}^{m-1} i$. Hence $f_{\mathcal{C}^{(m)}}(n) \geq m n+1-\sum_{i=0}^{m-1} i$ for every $n \geq m$.
Finally, given an arbitrary positive number c we can find $m>c$ and $N \geq m$ such that for every $n \geq N$ we get $c n<m n+1-\sum_{i=0}^{m-1} i$. Then for $S=\bar{S}^{(m)}$ and $\mathcal{C}=\mathcal{C}^{(m)}$ we get $f_{\mathcal{C}}(n)>c n$ for every $n \geq N$.

2

a. Since every decomposition of R into distinct cells E_{1}, \ldots, E_{k} is in particular a partition of R, every intersection $\bigcap_{1 \leq i \leq k} E_{i}^{\varepsilon(i)}$ is nonempty precisely when there is exactly one i for which $\varepsilon(i)=1$, in which case the intersection equals E_{i}. Hence the atoms are precisely E_{1}, \ldots, E_{k}.
b. A definably connected subsets of R consists of an interval possibly together with either or both of its endpoints. Given definably connected $S_{1}, \ldots, S_{k} \subseteq$

[^0]R, let x_{1}, \ldots, x_{ℓ} list their endpoints in R in ascending order. Each S_{i} contributes at most two endpoints to this list, so $\ell \leq 2 k$. The decomposition $\left\{\left(-\infty, x_{1}\right),\left\{x_{1}\right\},\left(x_{1}, x_{2}\right),\left\{x_{2}\right\}, \ldots,\left\{x_{\ell}\right\},\left(x_{\ell},+\infty\right)\right\}$ clearly partitions each of the S_{i}, and has $2 \ell+1 \leq 4 k+1$ elements.
c. It is sufficient to show that there are c and N such that $f^{\mathcal{G}}(n) \leq c n$ for $n \geq N$. By the finiteness theorem there exists a natural number e such that each cofiber S^{y} has at most e definably connected components. Let n be arbitrary and suppose $y_{1}, \ldots, y_{n} \in R^{q}$ are distinct. Let I_{1}, \ldots, I_{k} list all the distinct definably connected components of all the $S^{y_{i}}$, and note that $k \leq e n$. Apply (b) to obtain a decomposition of R into cells E_{1}, \ldots, E_{m} partitioning each I_{i} with $m \leq 4 k+1$. Since every $S^{y_{i}}$ is a union of some I_{j} 's, and therefore, of some E_{j} 's, the boolean algebra $B\left(S^{y_{1}}, \ldots, s^{y_{n}}\right)$ is contained in $B\left(E_{1}, \ldots, E_{m}\right)$. Hence the number of atoms of the former is bounded by the number of atoms of the latter, which because of (a) is precisely m. Finally, $m \leq 4 k+1 \leq 4 e n+1$, and since n and the y_{i} were arbitrary, we see that $f^{\mathcal{G}}(n) \leq 4 e n+1$. We conclude by taking some $c>4 e$ and finding a suitably large N such that $4 e n+1 \leq c n$ for $n \geq N$.

[^0]: ${ }^{1}$ I personally think Martijn's example was the simplest and easier to understand.

