# Topos Theory, Spring 2024 Hand-In Exercises 

Jaap van Oosten

February-May 2024

## 1 Exercises

Exercise 1 (Deadline: February 29) We consider a small category $\mathcal{C}$ and a monoid $M$. An $M$-presheaf on $\mathcal{C}$ is a presheaf $F$ on $\mathcal{C}$ endowed with, for every object $C \in \mathcal{C}$, a right $M$-action $F(C) \times M \rightarrow F(C)$ (written: $(x, m) \mapsto x m)$ which, besides the usual axioms for an $M$-action, also satisfies: $f^{*}(x m)=$ $f^{*}(x) m$ for $f: D \rightarrow C, x \in F(C)$ and $m \in M$. A morphism of $M$-presheaves $F \rightarrow G$ is a natural transformation $\mu: F \Rightarrow G$ such that $\mu_{C}(x m)=\mu_{C}(x) m$ for all $C \in \mathcal{C}, x \in F(C)$. Clearly, we have a category $M-\widehat{\mathcal{C}}$ of $M$-presheaves and morphisms.
a) Let $\Delta: \widehat{\mathcal{C}} \rightarrow M-\widehat{\mathcal{C}}$ be the functor which endows each presheaf $F$ with the trivial (identity) $M$-action. Show that $\Delta$ has a right adjoint, and describe it explicitly.
b) Show that $M-\widehat{\mathcal{C}}$ is a topos.

Exercise 2 (Deadline: March 14) Recall the definition (before Proposition 3.14) of the map $\exists_{f}: \Omega^{X} \rightarrow \Omega^{Y}$ for any monomorphism $f: X \rightarrow Y$.
a) (4 pts) Show that $\exists f$ induces a function $\sum_{f}: \operatorname{Sub}(X) \rightarrow \operatorname{Sub}(Y)$, and describe this function explicitly.
b) (6 pts) Show that for any subobject $A$ of $X$, the inequality $A \leq f^{*}\left(\sum_{f}(A)\right)$ holds.

Exercise 3 (Deadline: March 28) Let $T: \mathcal{E} \rightarrow \mathcal{F}$ be a logical functor between toposes.
a) (4 pts) Let $X$ be an object of $\mathcal{E}$. Show that the functor $T / X: \mathcal{E} / X \rightarrow$ $\mathcal{F} / T X$ which sends $(Y \xrightarrow{f} X)$ to $(T Y \xrightarrow{T f} T X$ (with the straightforward action on morphisms) is logical.
b) (3 pts) Suppose the functor $T$ has a left adjoint $F$. Show that $T / X$ has a left adjoint.
c) (3 pts) Under the assumption in b), show that $T / X$ has a right adjoint. Can you describe it explicitly?

Exercise 4 (Deadline: April 11) We consider a universal closure operation $c$ on a topos $\mathcal{E}$.
a) (2 pts) Let

be a commutative square with $m$ a dense mono and $n$ a closed mono. Prove that there is a unique "filler" $g: A \rightarrow B^{\prime}$ (i.e., a map such that $g m=f^{\prime}$ and $\left.n g=f\right)$.
b) (2 pts) For a subobject $A^{\prime}$ of $A$, show that $c_{A}\left(A^{\prime}\right)$ is the unique subobject $A^{\prime \prime}$ of $A$ with the property that $A^{\prime} \rightarrow A^{\prime \prime}$ is dense and $A^{\prime \prime} \rightarrow A$ is closed.
c) (3 pts) Show that the composition of two dense monos is dense; and the same for closed monos.
d) (3 pts) Show that for $A^{\prime}, A^{\prime \prime} \in \operatorname{Sub}(A)$ we have: $c_{A}\left(A^{\prime} \cap A^{\prime \prime}\right)=c_{A}\left(A^{\prime}\right) \cap$ $c_{A}\left(A^{\prime \prime}\right)$. [Hint: one inclusion is clear since $c$ is order-preserving. For the other, show that it suffices to prove that $\left(A^{\prime} \cap A^{\prime \prime}\right) \rightarrow\left(c_{A}\left(A^{\prime}\right) \cap c_{A}\left(A^{\prime \prime}\right)\right)$ is dense and $\left(c_{A}\left(A^{\prime}\right) \cap c_{A}\left(A^{\prime \prime}\right)\right) \rightarrow A$ is closed.]

Exercise 5 (Deadline: April 25) This exercise is about the Heyting algebra structure of subobject lattices. $\operatorname{Sub}(X)$ denotes the lattice of subobjects of $X$.
a) Let $i: X \rightarrow Y$ be a monomorphism. Prove: if $\operatorname{Sub}(Y)$ is a Boolean algebra, then so is $\operatorname{Sub}(X)$.
b) Let $p: X \rightarrow Y$ be an epimorphism. Prove: if $\operatorname{Sub}(X)$ is a Boolean algebra, then so is $\operatorname{Sub}(Y)$.

Exercise 6 (Deadline: May 16) Let $L$ be a one-sorted first-order language and suppose $R$ is an $L$-structure in a topos $\mathcal{E}$.
a) Construct, for every object $X$ of $\mathcal{E}$, an $L$-structure $R_{X}$ on the set $\mathcal{E}(X, R)$.
b) Let $\phi$ be an $L$-formula with $n$ free variables $x_{1}, \ldots, x_{n}$, and suppose the only logical symbols occurring in $\phi$ are $\wedge$ and $\rightarrow$. Prove: for any $n$-tuple $\alpha_{1}, \ldots, \alpha_{n}: X \rightarrow R$ the following are equivalent:
i) $\quad X \Vdash \phi\left[\alpha_{1}, \ldots, \alpha_{n}\right]$
ii) For all arrows $f: Y \rightarrow X, R_{Y} \models \phi\left(\alpha_{1} f, \ldots, \alpha_{n} f\right)$

## 2 Solutions

Exercise 1 a) Clearly, if $\mu: \Delta(F) \rightarrow G$ is any morphism in $M-\widehat{C}$ then by the definition of such morphisms, for all $C \in \mathcal{C}, x \in F(C)$ and $m \in M$ we have $\left(\mu_{C}(x)\right) m=\mu_{C}(x)$, so $\mu$ lands in the part of $G$ which is invariant under the $M$-action. We have a functor from $M-\widehat{\mathcal{C}}$ to $\widehat{\mathcal{C}}$ which sends each $M$-presheaf to its invariant part. This is right adjoint to $\Delta$, the verification of which is left to you.
b) This is most easily done by observing that $M-\widehat{\mathcal{C}}$ is equivalent to a presheaf category: it is equivalent to the category of presheaves on the product category $\mathcal{C} \times M$.

Exercise 2 a) Elements of $\operatorname{Sub}(X)$ are in 1-1 correspondence with maps $1 \rightarrow$ $\Omega^{X}$ : take the exponential transpose of the classifying map.

Define $\sum_{f}$ as follows: for $A \in \operatorname{Sub}(X)$, corresponding to the map $a: 1 \rightarrow$ $\Omega^{X}$, define $\sum_{f}(A) \in \operatorname{Sub}(Y)$ as the subobject corresponding to the composition $\exists_{f} \circ a: 1 \rightarrow \Omega^{Y}$.

One can prove that this is simply the subobject $A \rightarrow X \xrightarrow{f} Y$, although it is hard to argue that this operation is induced by $\sum_{f}$.
b) Let $\widetilde{\exists_{f}}$ be the exponential transpose of $\exists_{f}$. Then $\sum_{f}(A)$ is classified by the composition

$$
Y \xrightarrow{\langle a, \text { id } Y\rangle} \Omega^{X} \times Y \xrightarrow{\widetilde{\exists_{f}}} \Omega .
$$

Then $f^{*}\left(\sum_{f}(A)\right)$ is classified by

$$
X \xrightarrow{f} Y \xrightarrow{\langle a, \text { id } y}\rangle \Omega^{X} \times Y \xrightarrow{\widetilde{\exists_{f}}} \Omega .
$$

and the inequality $A \leq f^{*}\left(\sum_{f}(A)\right)$ holds if and only if the composition

$$
A \rightarrow X \xrightarrow{f} Y \xrightarrow{\langle a, \text { id }\rangle} \Omega^{X} \times Y \xrightarrow{\widetilde{\exists_{f}}} \Omega
$$

factors through the subobject classifier $1 \xrightarrow{t} \Omega$.
This, however, follows from the commutative diagram:


The lower right-hand triangle commutes by Proposition 3.14, and the left hand square commutes because the composite $\operatorname{ev}_{X} \circ\langle a, \mathrm{id}\rangle$ equals the transpose of $a$, that is: the map which classifies $A$ as subobject of $X$.

Exercise 3 a) Assume $T: \mathcal{E} \rightarrow \mathcal{F}$ is logical; this means that $T$ preserves finite limits, subobject classifiers and exponentials. So $T(1 \xrightarrow{t} \Omega)$ is a subobject classifier in $\mathcal{F}$ and moreover, if $\chi_{A}: X \rightarrow \Omega$ classifies the subobject $A$ of $X$ in $\mathcal{E}$, then $T\left(\chi_{A}\right)$ classifies $T(A) \in \operatorname{Sub}(T X)$ in $\mathcal{F}$. It follows that the map $\Delta: X \times X \rightarrow \Omega$, which classifies the diagonal $\delta: X \rightarrow X \times X$, is preserved by $T$. Also, $T$ commutes with taking exponents and also with exponential transposes. So, for example, the singleton map $\{\cdot\}: X \rightarrow \Omega^{X}$ is preserved by $T$. We see that partial map classifiers are preserved by $T$. It is now a matter of inspection to see that the whole topos structure of $\mathcal{E} / X$ is preserved by $T / X$. We conclude that $T / X$ is logical.
b) Let $F \dashv T$. Define $F^{X}: \mathcal{F} / T X \rightarrow \mathcal{E} / X$ as follows: for an object $(Y \xrightarrow{g}$ $T X)$ of $\mathcal{F} / T X$ let $F^{X}(g)$ be the map $F Y \xrightarrow{\tilde{g}} X$, the transpose of $g$ along the adjunction $F \dashv T$. On morphisms

the image $F^{X}(h)$ is the map $F(h): \tilde{g} \rightarrow \tilde{g^{\prime}}$ obtained by transposing. The adjunction is straightforward.
c) The existence of a right adjoint is an immediate application of Corollary 3.20: $T / X$ is logical and has a left adjoint, so it has a right adjoint by 3.20 .

In order to exhibit the right adjoint, we use the assumption in b) once more, and conclude that $T$ has a right adjoint. Let $G: \mathcal{F} \rightarrow \mathcal{E}$ be right adjoint to $T$. Define $G_{X}: \mathcal{F} / T X \rightarrow \mathcal{E} / X$ as follows: $G_{X}(Y \xrightarrow{g} T X)$ is the map $Y^{\prime} \xrightarrow{f} X$, from the pullback diagram

where $\eta: X \rightarrow G T X$ is the unit of the adjunction $T \dashv G$. Again, the adjunction $T / X \dashv G_{X}$ is left to you.

Exercise 4 a) Commutativity of the square gives that $m \leq f^{*}(n)$ in $\operatorname{Sub}(A)$, so by the order-preservingness of the closure operation, we have $c_{A}(m) \leq$ $c_{A}\left(f^{*}(n)\right)$. Now $c_{A}(m)=\operatorname{id}_{A}$ since $m$ is dense, and $c_{A}\left(f^{*}(n)\right)=f^{*}\left(c_{X}(n)\right)=$ $f^{*}(n)$ by stability of closure and the assumption that $n$ is closed. The resulting
inequality $\operatorname{id}_{A} \leq f^{*}(n)$ in $\operatorname{Sub}(A)$ gives us a commutative diagram

where the square is a pullback, and $m: A^{\prime} \rightarrow A$ is the composite $b^{\prime} k$. Note that $b^{\prime} a b^{\prime}=b^{\prime}$ hence $a b^{\prime}=$ id since $b^{\prime}$ is mono. Therefore the map $g=b a: A \rightarrow B^{\prime}$ satisfies the stated equalities.
b) We have inclusions $A^{\prime} \rightarrow c_{A}\left(A^{\prime}\right) \rightarrow A$. Clearly, the second one is closed. To see that the first one is dense we must prove the equality

$$
c_{c_{A}\left(A^{\prime}\right)}\left(A^{\prime}\right)=c_{A}\left(A^{\prime}\right)
$$

Consider the pullback


The desired equality is now clear from:

$$
c_{c_{A}\left(A^{\prime}\right)}\left(A^{\prime}\right)=c_{c_{A}\left(A^{\prime}\right)}\left(i^{*} A^{\prime}\right)=i^{*}\left(c_{A}\left(A^{\prime}\right)\right)=c_{A}\left(A^{\prime}\right)
$$

Now, we need to see that $c_{A}\left(A^{\prime}\right)$ is unique with the stated property. So assume $A^{\prime \prime}$ is such that $A^{\prime} \rightarrow A^{\prime \prime}$ is dense and $A^{\prime \prime} \rightarrow A$ is closed. We have commutative diagrams

which in turn, by applying part a), yield $c_{A}\left(A^{\prime}\right) \leq A^{\prime \prime}$ and $A^{\prime \prime} \leq c_{A}\left(A^{\prime}\right)$. We conclude that $A^{\prime \prime}=c_{A}\left(A^{\prime}\right)$.
c) Let $N \rightarrow M \rightarrow X$ be subobjects. First assume both inclusions are dense; we show that $N \rightarrow X$ is dense. Let $i: M \rightarrow X$ the inclusion. We have:

$$
c_{X}(N) \cap M=i^{*}\left(c_{X}(N)\right)=c_{M}\left(i^{*} N\right)=c_{M}(M \cap N)=c_{M}(N)
$$

Now since $N \rightarrow M$ is dense we have

$$
M=c_{M}(N)=c_{X}(N) \cap M,
$$

so $M \subseteq c_{X}(N)$. Since $c$ is order preserving and idempotent we have $X=$ $c_{X}(M) \subseteq c_{X}\left(c_{X}(N)\right)=c_{X}(N)$, giving that $N \rightarrow X$ is dense as required.

Now assume both inclusions are closed. We have (as used before) $c_{X}(N) \cap$ $M=c_{M}(N)=N$, so we have a pullback:


Since $M \rightarrow X$ is closed, $N \rightarrow c_{X}(N)$ is closed. But $N \rightarrow c_{X}(N)$ is also dense. We conclude $N=c_{X}(N)$.
d) First a little remark: if $A \xrightarrow{i} B \xrightarrow{j} X$ is a composition of monos and $c_{X}(A)=B$, then $i$ is dense. Indeed,

$$
c_{B}(A)=c_{X}(A) \cap B=j^{*}\left(c_{X}(A)\right)=B .
$$

For the proof that $c_{A}\left(A^{\prime} \cap A^{\prime \prime}\right)=c_{A}\left(A^{\prime}\right) \cap c_{A}\left(A^{\prime \prime}\right)$, we prove:
d1) the map $A^{\prime} \cap A^{\prime \prime} \rightarrow c_{A}\left(A^{\prime}\right) \cap c_{A}\left(A^{\prime \prime}\right)$ is dense;
d2) the $\operatorname{map} c_{A}\left(A^{\prime}\right) \cap c_{A}\left(A^{\prime \prime}\right) \rightarrow A$ is closed.
Let us first see that this is enough. We first show that statements d1) and d2) also hold for $c_{A}\left(A^{\prime} \cap A^{\prime \prime}\right)$ in the place of $c_{A}\left(A^{\prime}\right) \cap c_{A}\left(A^{\prime \prime}\right)$, so that by the uniqueness of part b) we will be done after proving d1) and d2).

We have that $c_{A}\left(A^{\prime} \cap A^{\prime \prime}\right) \rightarrow A$ is clearly closed, and $c_{A}\left(A^{\prime} \cap A^{\prime \prime}\right) \rightarrow c_{A}\left(A^{\prime}\right) \cap$ $c_{A}\left(A^{\prime \prime}\right)$ is dense by the little remark, since

$$
\begin{aligned}
c_{c_{A}\left(A^{\prime \prime}\right)}\left(c_{A}\left(A^{\prime}\right) \cap c_{A}\left(A^{\prime \prime}\right)\right) & = & c_{c_{A}\left(A^{\prime \prime}\right)}\left(\left(j^{\prime}\right)^{*}\left(c_{A}\left(A^{\prime}\right)\right)\right) & = \\
\left(j^{\prime}\right)^{*} c_{A}\left(c_{A}\left(A^{\prime}\right)\right) & = & \left.j^{\prime}\right)^{*} c_{A}\left(A^{\prime}\right) & =c_{A}\left(A^{\prime}\right) \cap c_{A}\left(A^{\prime \prime}\right)
\end{aligned}
$$

(where $j^{\prime}$ is the mono $c_{A}\left(A^{\prime \prime}\right) \rightarrow A$ ).
Now for the proof of d 1 ) and d 2 ).
d1): this arrow is a composite of $A^{\prime} \cap A^{\prime \prime} \rightarrow c_{A}\left(A^{\prime}\right) \cap A^{\prime \prime} \rightarrow c_{A}\left(A^{\prime}\right) \cap c_{A}\left(A^{\prime \prime}\right)$. Let $j$ be the mono $A^{\prime \prime} \rightarrow A$. Then

$$
c_{A^{\prime \prime}}\left(A^{\prime} \cap A^{\prime \prime}\right)=c_{A^{\prime \prime}}\left(j^{*}\left(A^{\prime}\right)\right)=j^{*}\left(c_{A}\left(A^{\prime}\right)\right)=c_{A}\left(A^{\prime}\right) \cap A^{\prime \prime}
$$

so the first arrow in the composite is dense; the second one is dense because it is a pullback (intersection with $c_{A}\left(A^{\prime}\right)$ ) of the dense map $A^{\prime \prime} \rightarrow c_{A}\left(A^{\prime \prime}\right)$. By part c) we conclude that d1) has been proved.

For d2), we split this as $c_{A}\left(A^{\prime}\right) \cap c_{A}\left(A^{\prime \prime}\right) \rightarrow c_{A}\left(A^{\prime \prime}\right) \rightarrow A$. For the first of these arrows, we have (again, let $j^{\prime}$ be the arrow $c_{A}\left(A^{\prime \prime}\right) \rightarrow A$ ):

$$
c_{A}\left(A^{\prime}\right) \cap c_{A}\left(A^{\prime \prime}\right)=\left(j^{\prime}\right)^{*}\left(c_{A}\left(A^{\prime}\right)\right)=c_{c_{A}\left(A^{\prime \prime}\right)}\left(\left(j^{\prime}\right)^{*}\left(A^{\prime}\right)\right)
$$

We see that $c_{A}\left(A^{\prime}\right) \cap c_{A}\left(A^{\prime \prime}\right)$ is closed in $c_{A}\left(A^{\prime \prime}\right)$. The second arrow of the composite is trivially closed, so (invoking once again part c)) we are done.

