Topos Theory

[. Moerdijk and J. van Oosten
Department of Mathematics
Utrecht University

2007



Contents

1

Presheaves 1
1.1 Recovering the category from its presheaves? . . . .. .. .. 8
1.2 The Logic of Presheaves . . . . . .. ... ... ... ..... 9
1.2.1 First-order structures in categories of presheaves . . . 11
1.3 Two examples and applications . . . . . . ... ... ... .. 14
1.3.1 Kripke semantics . . . . . . . ... ... 14
1.3.2 Failure of the Axiom of Choice . . .. ... ... ... 16
Sheaves 19
2.1 Examples of Grothendieck topologies . . . . . . ... ... .. 27
2.2 Structure of the category of sheaves . . . .. ... ... ... 28
2.3 Application: a model for the independence of the Axiom of
Choice . . . . . . . . . e 33
2.4 Application: a model for “every function from reals to reals
is continuous” . . . . . ... 36
The Effective Topos 41
3.1 Some subcategories and functors . . . .. ... ... ... .. 43
3.2 Structureof Eff . . . . . ... oo 44
3.2.1 Finite products . . . . . . ... ... 44
3.2.2 Exponentials . . ... ... ... ... .. ... 45
3.2.3 Natural numbers object . . . . . ... ... .. .... 46
3.2.4 Finite Coproducts . . .. . .. .. ... .. ...... 47
3.2.5 Finite limits . . . . . . . ... ... L 48
3.2.6 Monics and the subobject classifier . . . . . . ... .. 49
3.3 Intermezzo: interpretation of languages and theories in toposes 53
3.4 FElements of the logic of Eff . . . . .. .. ... ... .. ... 60
Morphisms between toposes 64

Literature 69



1 Presheaves

We start by reviewing the category Set®” of contravariant functors from C
to Set. C is assumed to be a small category throughout. Objects of Set®””
are called presheaves on C.

We have the Yoneda embedding y : C — Set®”"; we write its effect on
objects C and arrows f as yc, yy respectively. So for f: C' — D we have
ys : yo — yp. Recall: yo(C') = C(C’,C), the set of arrows ¢’ — C in
C; for o : C" — C" we have yo(a) : yo(C') — yo(C”) which is defined by
composition with a, so yo(a)(g) = ga for g : C" — C. For f : C — D we
have yr : yo — yp which is a natural transformation with components

(yf)cr : ye(C') — yp(C)

given by (yr)cr(g) = fg. Note, that the naturality of y¢ is just the associa-
tivity of composition in C.

Presheaves of the form yc are called representable.

The Yoneda Lemma says that there is a 1-1 correspondence between
elements of X (C) and arrows in Set®” from yc to X, for presheaves X and
objects C' of C, and this correspondence is natural in both X and C'. To every
element z € X (C) corresponds a natural transformation u : yo — X such
that (u)c(ide) = x; and natural transformations from yo are completely
determined by their effect on ido. An important consequence of the Yoneda
lemma is that the Yoneda embedding is actually an embedding, that is: full
and faithful, and injective on objects.

Examples of presheaf categories

1. A first example is the category of presheaves on a monoid (a one-
object category) M. Such a presheaf is nothing but a set X together
with a right M-action, that is: we have a map X x M — X, written
x, f — xf, satisfying xe = x (for the unit e of the monoid), and
(zf)g = x(fg). There is only one representable presheaf.

2. If the category C' is a poset (P, <), for p € P we have the representable
yp with y,(q) = {*} if ¢ < p, and () otherwise. So we can identify the
representable v, with the downset |(p) = {q|q < p}.

3. The category of directed graphs and graph morphisms is a presheaf
category: it is the category of presheaves on the category with two
objects e and v, and two non-identity arrows o,7 : v — e. For a
presheaf X on this category, X (v) can be seen as the set of vertices,



X (e) the set of edges, and X (o), X (7) : X(e) — X(v) as the source
and target maps.

4. A tree is a partially ordered set T" with a least element, such that for
any z € T, the set |[(r) = {y € T'|y < z} is a finite linearly ordered
subset of T. A morphism of trees f : T — S is an order-preserving
function wth the property that for any element x € T', the restriction
of f to |(x) is a bijection from |(z) to [(f(x)). A forest is a set of
trees; a map of forests X — Y is a function ¢ : X — Y together with
an X-indexed collection (f; |z € X) of morphisms of trees such that
fo i x — ¢(x). The category of forests and their maps is just the
category of presheaves on w, the first infinite ordinal.

Recall the definition of the category y| X (an example of a ‘comma cat-
egory’ construction): objects are pairs (C,u) with C' an object of C and
1 yo — X an arrow in Set®”. A morphism (C,pu) — (C’,v) is an arrow
f:C — C"in C such that the triangle

Yo —> Yycr

commutes.

Note that if this is the case and u : yo — X corresponds to £ € X (C)
and v : ycr — X corresponds to n € X(C’), then £ = X (f)(n).

There is a functor Uy : y|X — C (the forgetful functor) which sends
(C, ) to C and f to itself; by composition with y we get a diagram

yoUx : y| X — Set®”"

Clearly, there is a natural transformation p from yoUx to the constant
functor Ay from y|X to Set®” with value X: let Py = 1:yc — X. So
there is a cocone in Set®” for yoUx with vertex X.

Proposition 1.1 The cocone p: yoUx = Ax is colimiting.

Proof. Suppose A : yoUx = Ay is another cocone. Define v : X — Y by
ve(§) = (Mo )c(ide), where p: yo — X corresponds to § in the Yoneda
Lemma.



Then v is natural: if f:C’ — C in C and i : yor — X corresponds to
X(f)(&), the diagram

Yyer —> Yo

commutes, so f is an arrow (C', ') — (C, u) in y| X. Since A is a cocone,
we have that

Yo —> Yyc
A(C'k /(c )

commutes; so

ver(X(F)E) = Moo lide) =
Ao m)or((yp)erider)) = (A(C,u Jor(f) =
Y(H((Aepwlelide)) = Y (f)(ve(§))
It is easy to see that A : yoUx = Ay factors through p via v, and that the
factorization is unique. |

Proposition 1.1 is often referred to by saying that “every presheaf is a colimit
of representables”.

Let us note that the category Set®”” is complete and cocomplete, and that
limits and colimits are calculated ‘pointwise’: if I is a small category and
F : I — Set®” is a diagram, then for every object C' of C we have a diagram
Fo : I — Set by Fo(i) = F(i)(C); if X¢ is a colimit for this diagram in
Set, there is a unique presheaf structure on the collection (X |C € Cp)
making it into the vertex of a colimit for F. The same holds for limits.
Some immediate consequences of this are:

i) anarrow p: X — Y in Set®” is mono (resp. epi) if and only if every
component p¢ is an injective (resp. surjective) function of sets;

ii) the category Set®” is regular, and every epimorphism is a regular epi;
iii) the initial object of Set®” is the constant presheaf with value 0;
iv) X is terminal in Set®” if and only if every set X (C) is a singleton;

v) for every presheaf X, the functor (—) x X : Set®” — Set®” preserves
colimits.



Furthermore we note the following fact: the Yoneda embedding C — Set®””
is the ‘free colimit completion’ of C. That is: for any functor F' : C — D
where D is a cocomplete category, there is, up to isomorphism, exactly one
colimit preserving functor F : Set®” — D such that the diagram

N A

Setc””

commutes. F(X) is computed as the colimit in D of the diagram
yxEctp
The functor F is also called the ‘left Kan extension of F' along y’.

We shall now calculate explicitly some structure of Set®”. Exponentials
can be calculated using the Yoneda Lemma and proposition 1.1. For Y X,
we need a natural 1-1 correspondence

SetC™(Z,YX) ~ Set®™ (Z x X,Y)

In particular this should hold for representable presheaves yc; so, by the
Yoneda Lemma, we should have a 1-1 correspondence

YX(C) ~ Set®” (yo x X,Y)

which is natural in C. This leads us to define a presheaf Y X by: YX(C) =
Set®” (yo x X,Y), and for f : C' — C we let YX(f) : YX(C) — YX(C') be
defined by composition with y¢ xidx : yor x X — yo x X. Then certainly,
Y X is a well-defined presheaf and for representable presheaves we have the
natural bijection Set®” (yo,Y¥) ~ Set® (yo x X,Y) we want. In order
to show that it holds for arbitrary presheaves Z we use proposition 1.1.
Given Z, we have the diagram yoUy : y|Z — C — Set®” of which Z is a
colimit. Therefore arrows Z — Y X correspond to cocones on yoUy with
vertex YX. Since we have our correspondence for representables y¢, such
cocones correspond to cocones on the diagram

(—)xX
o

ylz Uz C L SetC” Set¢”

with vertex Y. Because, as already noted, the functor (—) x X preserves
colimits, these correspond to arrows Z x X — Y, as desired.



It is easy to see that the construction of YX gives a functor (—)X :
Set®™ — Set®” which is right adjoint to (=) x X, thus establishing that
Set®™ is cartesian closed. The evaluation map evxy : YXXxX > Yis given
by

(¢, 7) — ¢c(ide,x)

Exercise 1 Show that the map evyy, thus defined, is indeed a natural
transformation.

Exercise 2 Prove that y : C — Set®” preserves all limits which exist in C.
Prove also, that if C is cartesian closed, y preserves exponents.

Another piece of structure we shall need is that of a subobject classifier.
Suppose £ is a category with finite limits. A subobject classifier is a
monomorphism ¢ : T — ) with the property that for any monomorphism
m : A — B in £ there is a unique arrow ¢ : B —  such that there is a
pullback diagram
A—

~

m

~+

o)

B=3

We say that the unique arrow ¢ classifies m or rather, the subobject rep-
resented by m (if m and m’ represent the same subobject, they have the
same classifying arrow). In Set, any two element set {a,b} together with a
specific choice of one of them, say b (considered as arrow 1 — {a, b}) acts as
a subobject classifier: for A C B we have the unique characteristic function
¢4 : B — {a,b} defined by ¢pa(z) =bif x € A, and ¢4(z) = a otherwise.

It is no coincidence that in Set, the domain of ¢t : T' — Q is a terminal
object: T is always terminal. For, for any object A the arrow ¢ : A —
which classifies the identity on A factors as tn for some n : A — T. On the
other hand, if k : A — T is any arrow, then we have pullback diagrams

A
idAl
A

so tk classifies id 4. By uniqueness of the classifying map, tn = tk; since ¢

idp

k
— T —

N

ldT

—
QO——H™

—
k

N

t

is mono, n = k. So T is terminal. Henceforth we shall write 1 L Q for the
subobject classifier, or, by abuse of language, just (2.



Note: if 1 -5 Q is a subobject classifier in £ then we have a 1-1 corre-

spondence between arrows A 2, Q and subobjects of A. This correspondence
is natural in the following sense: given f : B — A and a subobject U of A;
by fH(U) we denote the subobject of B obtained by pulling back U along f.
Then if ¢ classifies U, ¢f classifies fH(U).

First a remark about subobjects in Set®”. A subobject of X can be
identified with a subpresheaf of X: that is, a presheaf Y such that Y (C') C
X(C) for each C, and Y (f) is the restriction of X(f) to Y (cod(f)). This
follows easily from epi-mono factorizations pointwise, and the corresponding
fact in Set.

Again, we use the Yoneda Lemma to compute the subobject classifier
in Set®”. We need a presheaf Q such that at least for each representable
presheaf yo, Q(C) is in 1-1 correspondence with the set of subobjects (in
Set®™) of yco. So we define © such that Q(C) is the set of subpresheaves of
yo; for f: C" — C we have Q(f) defined by the action of pulling back along
Y.

! What do subpresheaves of yo look like? If R is a subpresheaf of yo then
R can be seen as a set of arrows with codomain C such that if f: C' — C
isin R and g : C” — C' is arbitrary, then fg is in R (for, fg = yc(9)(f))-
Such a set of arrows is called a sieve on C.

Under the correspondence between subobjects of yc and sieves on C,
the operation of pulling back a subobject along a map y¢ (for f : C" — C)
sends a sieve R on C' to the sieve f*(R) on C’ defined by

f(R) ={9:D—C"|fge R}

So  can be defined as follows: Q(C') is the set of sieves on C, and Q(f)(R) =
f*(R). The map t: 1 — 2 sends, for each C, the unique element of 1(C) to
the maximal sieve on C' (i.e., the unique sieve which contains id¢).

Exercise 3 Suppose C is a preorder (P,<). For p € P we let [(p) = {q €
P|q < p}. Show that sieves on p can be identified with downwards closed
subsets of |(p). If we denote the unique arrow ¢ — p by gp and U is a
downwards closed subset of |(p), what is (¢gp)*(U)?

Let us now prove that ¢ : 1 — , thus defined, is a subobject classifier
in Set®”. Let Y be a subpresheaf of X. Then for any C and any z € X(C),
the set

¢o(x) = {f: D= C[X(f)(z) e Y(D)}



is a sieve on C, and defining ¢ : X —  in this way gives a natural trans-
formation: for f: C’ — C we have

¢o(X(f)(x) = {g9:D—C"[X(9)(X(f)

(z
= {9:D—C"|X(gf)
= {9:D—

) €Y(D
Y(

(z) €
fg € dc(x
f*(¢c(x)
= Q(f)(¢c(x)
Moreover, if we take the pullback of ¢ along ¢, we get the subpresheaf of X
consisting of (at each object C') of those elements x for which id¢ € ¢c(z);
that is, we get Y. So ¢ classifies the subpresheaf Y.
On the other hand, if ¢ : X —  is any natural transformation such
that pulling back ¢ along ¢ gives Y, then for every x € X(C) we have that

x € Y(CO) if and only if ide € ¢ (x). But then by naturality we get for any
f:C"— C that

X(f)(@) e Y(C) & ider € f(¢c(x) & € ¢clz)

which shows that the classifying map ¢ is unique.

Combining the subobject classifier with the cartesian closed structure, we
obtain power objects. In a category £ with finite products, we call an object
A a power object of the object X, if there is a natural 1-1 correspondence

E(Y,A) ~ Subg(Y x X)

The naturality means that if f: Y — Aand g: Z — Y are arrows in £ and
f corresponds to the subobject U of Y x X, then fg: Z — A corresponds
to the subobject (g x idx)}(U) of Z x X.

Power objects are unique up to isomorphism; the power object of X,
if it exists, is usually denoted P(X). Note the following consequence of
the definition: to the identity map on P(X) corresponds a subobject of
P(X) x X which we call the “element relation” € x; it has the property that
whenever f : Y — P(X) corresponds to the subobject U of Y x X, then
U = (f xidx)*(ex).

Convince yourself that power objects in the category Set are just the
familiar power sets.

In a cartesian closed category with subobject classifier 2, power objects
exist: let P(X) = Q¥. Clearly, the defining 1-1 correspondence is there.

P(X)(C) = Sub(yc x X)
with action P(X)(f)(U) = (y; x idx)*(U).



Exercise 4 Show that P(X)(C') = Sub(yc x X) and that, for f : C" — C,
P(X)(f)(U) = (ys x idx)*({U). Prove also, that the element relation, as a
subpresheaf € x of P(X) x X, is given by

(ex)(C) = {(U,z) € Sub(yc x X) x X(C)|(ide,z) € U(C)}

Definition 1.2 A topos is a category with finite limits, which is cartesian
closed and has a subobject classifier.

1.1 Recovering the category from its presheaves?

In this short section we shall see to what extent the category Set®” deter-
mines C. In other words, suppose Set®” and Set””” are equivalent categories;
what can we say about C and D?

Definition 1.3 In a regular category an object P is called (regular) projec-
tive if for every regular epi f : A — B, any arrow P — B factors through
f- Equivalently, every regular epi with codomain P has a section.

Exercise 5 Prove the equivalence claimed in definiton 1.3.

Definition 1.4 An object X is called indecomposable if whenever X is a
coproduct [[; U;, then for ezactly one i the object U; is not initial.

Note, that an initial object is not indecomposable, just as 1 is not a
prime number.

In Set®”, coproducts are stable, which means that they are preserved by
pullback functors; this is easy to check. Another triviality is that the initial
object is strict: the only maps into it are isomorphisms.

Proposition 1.5 In Set®”, a presheaf X is indecomposable and projective
if and only if it is a retract of a representable presheaf: there is a diagram

X 5 yo = X with ri = idx.
Proof. Check yourself that every retract of a projective object is again pro-
jective. Similarly, a retract of an indecomposable object is indecomposable:

if X %Y % X is such that i = id x and Y is indecomposable, any presen-
tation of X as a coproduct [ [, U; can be pulled back along 7 to produce, by
stability of coproducts, a presentation of Y as coproduct [[, V; such that

Vi—Y

| |

Ui—>X



is a pullback; for exactly one ¢ then, V; is non-initial; hence since r is epi and
the initial object is strict, for exactly one 7 we have that U; is non-initial. We
see that the property of being projective and indecomposable is inherited by
retracts. Moreover, every representable is indecomposable and projective,
as we leave for you to check.

Conversely, assume X is indecomposable and projective. By proposi-
tion 1.1 and the standard construction of colimits from coproducts and co-
equalizers, there is an epi [[; yc, — X from a coproduct of representables.
Since X is projective, this epi has a section ¢. Pulling back along ¢ we get a
presentation of X as a coproduct [[, V; such that

Vi——X

|k

is a pullback diagram. X was assumed indecomposable, so exactly one V; is
non-initial. But this means that X is a retract of y¢;,. |

If X is a retract of yo, say X LA yo = X with vp = idy, consider pv :
yo — yc. This arrow is idempotent: (uv)(uv) = p(vp)v = pr, and since the
Yoneda embedding is full and faithful, uv = y. for an idempotent e : C — C
in C.

A category C is said to be Cauchy complete if for every idempotent
e : C — C there is a diagram D = C' 5 D with ri = idp and ir = e. One
also says: “idempotents split”. In the situation above (where X is a retract

of yc) we see that X must then be isomorphic to yp for a retract D of C' in
C. We conclude:

Theorem 1.6 If C is Cauchy complete, C is equivalent to the full subcat-
egory of Set®” on the indecomposable projectives. Hence if C and D are
Cauchy complete and Set®” and SetP”" are equivalent, so are C and D.

Exercise 6 Show that if C has equalizers, C is Cauchy complete.

1.2 The Logic of Presheaves

Definition 1.7 A Heyting algebra H is a lattice (L, T,V,A) together with
a binary operation — (called Heyting implication), which satisfies the fol-
lowing equivalence for all a,b,c € H:

aANb<c¢c & a<b—c



Exercise 7 Prove that every Heyting algebra, as a lattice, is distributive:
xA(yVz)=(zAy)V(xAz)and xV (yAz) = (zVy)A(xzVz) hold, for all
x,y,z € H.

For a presheaf X we shall write Sub(X) for the set of subpresheaves of X.
Soif ¢: X — Y in Set®” we gave ¢f : Sub(Y) — Sub(X) by pulling back.

Theorem 1.8 Every poset Sub(X) is a Heyting algebra. For every ¢ :
Y — X, the map ¢* commutes with the Heyting structure (L, T,AV,—
). Moreover, & has both a right and a left adjoint, denoted Vg and 3y
respectively.

Proof. Since limits and colimits are computed pointwise, A and V (between
subpresheaves) are given by pointwise intersection and union, respectively.
The empty subpresheaf is, of course, the bottom element of Sub(X), and X
itself is the top element. Heyting implication is not done pointwise, since if
A and B are subpresheaves of X, setting

(A— B)(C) = {z € X(C)|z € AC) =z € B(C)}

does not necessarily define a subpresheaf of X (check this!). Therefore we
put

(A= B)(C) = {z € X(C)|Vf: C' — C(X(f)(x) € AC") = X(f)(z) € BC")))

Then (A — B) is a subpresheaf of X. It is easy to verify that if D is another
subpresheaf of X then D is a subpresheaf of (A — B) if and only if D N A
is a subpresheaf of B.

Let us check that ¢ preserves Heyting implication (the rest of the struc-
ture is left to you):

 {yeY(O)Vf: O — C(Y(f)(y) € dH(A)(C) =
(¢*(A) — ¢*(B))(C) = Y () €
(

{yeY(O)IVf:C'— C(cbc'(Y((f)(y
f

{yeY(C)locly) € (A— B)(C
= ¢*(A— B)(C)

The left adjoint 34(A) (where now A is a subpresheaf of Y) is, just as
in the case of regular categories, given by the image of A under ¢, and this
is done pointwise. So,

35(A)(C) = {z € X(C)|Ty € A(C)(z = ¢c(y))}

10



Clearly then, if B is a subpresheaf of X, we have 34(A4) < B in Sub(X) if
and only if A < ¢*(B) in Sub(Y).
The right adjoint V4 (A) is given by

Vo(A)(C) = {z e X(O)|Vf:D — CVy e Y(D)(¢p(y) =z =y € A(D))}

Check for yourself that then, B < V,(A) in Sub(X) if and only if ¢*(B) < A
in Sub(Y'). |

Exercise 8 Prove that for ¢ : ¥ — X, A a subpresheaf of X and B a

subpresheaf of Y,
34(0*(A) AB) = AATy(B)

Which property of the map ¢ do you need?

Exercise 9 Suppose X is a presheaf on C. Let S be the set of all those
Co-indexed collections of sets A = (A¢ | c € Cpy) for which A¢ is a subset of
X(C) for each C. S is ordered pointwise: A < B iff for each C, Ac C Be.

Let ¢ : Sub(X) — S be the inclusion. Show that ¢ has both a left and a
right adjoint.

1.2.1 First-order structures in categories of presheaves

In any regular category which satisfies the properties of theorem 1.8 (such a
category is often called a ‘Heyting category’), one can extend the interpreta-
tion of ‘regular logic’ in regular categories to full first-order logic. We shall
retain as much as possible the notation from chapter 4 of ‘Basic Category
Theory’.

We have a language £, which consists of a collection of sorts S, T,...,
possibly constants ¢ of sort S, function symbols f : Si,...,S, — S, and
relation symbols R C S4,...,S,. The definition of formula is extended with
the clauses:

i) If ¢ and v are formulas then (¢ V v), (¢ — 1) and —¢ are formulas;
ii) if ¢ is a formula and 2° a variable of sort S then Vz°¢ is a formula.

For the notations FV (t) and FV(p) we refer to the mentioned chapter 4.
Again, an interpretation assigns objects [.S] to the sorts S, arrows to the
function symbols and subobjects to relation symbols. This then leads to
the definition of the interpretation of a formula ¢ as a subobject [¢] of
[FV(p)], which is a chosen product of the interpretations of all the sorts

11



of the free variables of ¢: if FV(p) = {2',..., 25"} then [FV(p)] =
[S1] - x[Sn]

The definition of [ ¢ ] of the mentioned chapter 4 is now extended by the
clauses:

i) IfJe] —=[FV(e)] and [¢] — [FV ()] are given and
)

1

)
[FV(e AP ] —[FV(e)]

[FV(¥)]

are the projections, then

[ovel = (m)P[e]) V() ([¢]) inSub([FV (e A¥)])
[o—=9] = (@)H[e]) = (@) [¥]) nSub([FV(pA)])
[l = [e]l—=1L in Sub([FV(¢)])

)

(Note that FV(p AvY) = FV(p V) = FV(p — 1)

i) if [e] — [FV(e)] is given and 7 : [FV ()] — [FV(3zy)] is
the projection, let FV'(¢) = FV(p Az = x) and 7’ : [FV'(¢)] —
[FV(e)] the projection. Then

[Vze] = Yar (7 ([ 2]))

We shall now write out what this means, concretely, in Set®” . For a formula
¢, we have [¢] as a subobject of [ F'V(¢) ], hence we have a classifying map
{0} : [FV(9)] — @ with components {p}c : [FV(9)[(C) — Q(C); for
(a1,...,an) € [FV(p)](C), {¢}c(a1,... ay) is a sieve on C.

Definition 1.9 For ¢ a formula with free variables z1,...,x,, C' an object
of C and (ai,...,an) € [FV(e)](C), the notation C I+ ¢(a1,...,a,) means
that idc € {p}tc(ar,...,a,).

The pronunciation of “I-” is ‘forces’.

Notation. For ¢ a formula with free variables xf oo ,xﬁ”, C an object of

C and (ai,...,an) € [FV(p)](C) as above, so a; € [ S;](C),if f:C"— C
is an arrow in C we shall write a; f for [.S; J(f)(a;).

Note: with this notation and ¢, C, aq,...,a,, [ : C' — C as above, we have
f€{ptela,...,a,) if and only if C' IF p(a1f,...,anf).

Using the characterization of the Heyting structure of Set®” given in the
proof of theorem 1.8, we can easily write down an inductive definition for
the notion C' I+ p(aq,...,a,):

12



o ClF(t=s)(ay,...,a,)ifandonlyif [t]c(a1,...,an) =[s]c(al,...,an)
e CIF R(ty,...,t)(a1,...,a,) if and only if
(It1]e(ar, ... an), ... [t ]c(ar,...,an)) € [R](C)

o ClF(pAy)(a,...,ay,) if and only if

Cl-elay,...,ay) and CIFY(ay, ... an)
e ClF(pV)a,...,ay,) if and only if

Clplay,...,a,) or ClF(ay,..., an)
o ClF (¢ —v)(a,...,ay) if and only if for every arrow f: C' — C,

if "I+ (arf,...,anf) then C" Ik Y(arf,... anf)

o C IF —p(ay,...,ay) if and only if for no arrow f : ¢ — C, C' I+
Qo(alfa"'va’nf)

e C IF 3x%p(ay,...,a,) if and only if for some a € [S](C), C Ir
QO(CL, ai,... 7an)
o CIFVz¥p(ay,...,a,) if and only if for every arrow f : C' — C and

every a € [ S](C’),

C'IFo(a,arf,...,anf)

Exercise 10 Prove: if C'I- ¢(aq,...,a,) and f: C' — C is an arrow, then

C'IFplarf,...,anf).

Now let ¢ be a sentence of the language, so [¢] is a subobject of 1 in Set €.
Note: a subobject of 1 is ‘the same thing’ as a collection X of objects of C
such that whenever C € X and f : C/ — C is arbitrary, then C’ € X also.

The following theorem is straightforward.

Theorem 1.10 For a language L and interpretation [-] of L in Set®™ | we
have that for every L-sentence ¢, [¢] ={C € Co|C I+ ¢}. Hence, ¢ is true
for the interpretation in Set®” if and only if for every C, C'IF ¢.
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If T is a set of L-sentences and ¢ an L-sentence, we write I' IF ¢ to mean:
in every interpretation in a presheaf category such that every sentence of I'
is true, ¢ is true.

We mention without proof:

Theorem 1.11 (Soundness and Completeness) IfT is a set of L-sentences
and ¢ an L-sentence, we have I' IF ¢ if and only if ¢ is provable from I' in
intuitionistic predicate calculus.

Intuitionistic predicate calculus is what one gets from classical logic by delet-
ing the rule which infers ¢ from a proof that —¢ implies absurdity. In a
Gentzen calculus, this means that one restricts attention to those sequents
I' = A for which A consists of at most one formula.

Exercise 11 Let N denote the constant presheaf with value N.

i) Show that there are maps 0 : 1 — N and S : N — N which make N
into a natural numbers object in Set®”".

ii) Accordingly, there is an interpretation of the language of first-order
arithmetic in Set®”, where the unique sort is interpreted by N. Prove,
that for this interpretation, a sentence in the language of arithmetic
is true if and only if it is true classically in the standard model N.

Exercise 12 Prove that for every object C of C, the set Q(C) of sieves
on C is a Heyting algebra, and that for every map f : C’ — C in C,
Q(f) : Q(C) — Q(C") preserves the Heyting structure. Write out explicitly
the Heyting implication (R — S) of two sieves.

1.3 Two examples and applications
1.3.1 Kripke semantics

Kripke semantics is a special kind of presheaf semantics: C is taken to be
a poset, and the sorts are interpreted by presheaves X such that for every
q < p the map X(¢ <p): X(p) — X(q) is an inclusion of sets. Let us call
these presheaves Kripke presheaves.

The soundness and completeness theorem 1.11 already holds for Kripke
semantics. This raises the question whether the greater generality of presheaves
achieves anything new. In this example, we shall see that general presheaves
are richer than Kripke models if one considers intermediate logics: logics
stronger than intuitionistic logic but weaker than classical logic.
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In order to warm up, let us look at Kripke models for propositional logic.
The propositional variables are interpreted as subobjects of 1 in Set®” (for a
poset (K, <)); that means, as downwards closed subsets of K (see te remark
just before theorem 1.10). Let, for example, I be the poset:

/ ’ \

k l
and let [p] = {k}. Then O I p, 01 —p (since k < 0 and k I p) and 0 I —=—p
(since I <0 and ! IF —p). So pV —pV ——p is not true for this interpretation.
Even simpler, if £ = {0 < 1} and [p] = {0}, then 1 I p V —p. However, if
K is a linear order, then (p — ¢q) V (¢ — p) is always true on K, since if £ is
linear, then so is the poset of its downwards closed subsets. From this one

can conclude that if one adds to intuitionistic propositional logic the axiom
scheme

(@ —=Y)V (Y — o)
one gets a logic which is strictly between intuitionistic and classical logic.

Exercise 13 Prove that in fact, K is linear if and only if (p — q)V (¢ — p)
is always true on K. Prove also, that —p V ——p is always true on K if and
only if I has the following property: whenever two elements have an upper
bound, they also have a lower bound.

Not only certain properties of posets can be characterized by the propo-
sitional logic they satisfy in the sense of exercise 13, also properties of
presheaves.

Exercise 14 Let X be a Kripke presheaf on a poset . Show that the
following axiom scheme of predicate logic:

D Vz(A(z)V B) — (VzA(x) V B)

(where A and B may contain additional variables, but the variable x is not
allowed to occur in B) is always true in X, if and only if for every k¥’ < k in
K, the map X (k) — X (k') is the identity.

Suppose now one considers the logic D-J, which is intuitionistic logic
extended with the axiom schemes —¢ V —=—¢ and the axiom scheme D from
exercise 14. One might expect (in view of exercises 13 and 14) that this logic
is complete with respect to constant presheaves on posets K which have the
property that whenever two elements have an upper bound, they also have
a lower bound. However, this is not the case!
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Proposition 1.12 Suppose X is a constant presheaf on a poset K which
has the property that whenever two elements have an upper bound, they also
have a lower bound. Then the following ariom scheme is always true on X:

Va[(R — (S V A(2))) V (S — (RV A(z)))] A ~VA(z)

[(R— S)V (S — R)
Exercise 15 Prove proposition 1.12.

However, the axiom scheme in proposition 1.12 is not a consequence of the
logic D-J, which fact can be shown using presheaves. This was also shown
by Ghilardi. We give the relevant statements without proof; the interested
reader is referred to Arch.Math.Logic 29 (1989), 125-136.

Proposition 1.13 i) The aziom scheme —¢ \V ——¢ is true in every in-
terpretation in Set®” if and only if the category C has the property that
every pair of arrows with common codomain fits into a commutative
square.

ii) Let X be a presheaf on a category C. Suppose X has the property that
forall f:C" — C inC, alln >0, all z1,...,2, € X(C) and all
y € X(C') there is f': C" — C and x € X(C) such that xf =y and
o1 f =x1f,...,xnf = xpnf'. Then for every interpretation on X the
axiom scheme D of exercise 14 is true.

ii1) There exist a category C satisfying the property of i), and a presheaf
X on C satisfying the property of ii), and an interpretation on X for
which an instance of the axiom scheme of proposition 1.12 is not true.

1.3.2 Failure of the Axiom of Choice

In this example, due to M. Fourman and A. Scedrov (Manuscr. Math. 38
(1982), 325-332), we explore a bit the higher-order structure of a presheaf
category. Recall that the Axiom of Choice says: if X is a set consisting of
nonempty sets, there is a function F' : X — |JX such that F(z) € z for
every x € X. This axiom is not provable in Zermelo-Fraenkel set theory,
but it is classically totally unproblematic for finite X (induction on the
cardinality of X).

We exhibit here a category C, a presheaf Y on C, and a subpresheaf X of
the power object P(Y) such that the following statements are true in Set®”:

Vap € X(a =) (“X has at most one element”)
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Vaoe XdzyeY(x #yAVzeY(z € a o z=aVz=y)) (“every
element of X has exactly two elements”)

There is no arrow X — [J X (this is stronger than: X has no choice
function).

Consider the category C with two objects and two non-identity arrows:
s(_D—"=E

subject to the equations 42 = idp and of = a.
We calculate the representables yp and yg, and the map y, : yp — yg:

yp(E) = (Ya)p(idp) = «

yp(D) = {1dp,ﬂ} (Ya)D(B) = o

yp(a) is the empty function (yo)p is the empty function
yp(B)(idp) = yp(B)(B) =idp

Since E is terminal in C, yg is a terminal object in Set¢””

ye(E) = {idg}, ye(D) ={a}, ye(a)(idr) = o, ye(f)(a) = o

Now let us calculate the power object P(yp). According to the explicit
construction of power objects in presheaf categories, we have

P(yp)(E) = Sub(ye X yp)
P(yp)(D) = Sub(yp x yp)

(yg X yp)(D) is the two-element set {(a,idp), (o, 5)} which are permuted
by the action of 3, and (yg X yp)(E) = 0. So we see that Sub(yg X yp) has
two elements: () (the empty presheaf) and yg x yp itself. (yp x yp)(D) has
4 elements: (idp, ), (8,idp), (5,0),(idp,idp) and we have: (idp,3)8 =
(B,idp) and (8, 5)8 = (idp,idp).

So Sub(yp X yp) has 4 elements: 0, yp x yp, A, B where A and B are

such that
A(E) =0 A(D)={(dp,p),(B,idp)}
B(E) =0 B(D)={(8,5),(idp,idp)}

Summarizing: we have P(yp)(E) = {0,yg x yp}, Plyp)(D) = {0,yp x
yp,A,B}. The map P(yp)(«a) is given by pullback along y, x id,, and
sends therefore () to () and yg x yp to yp X yp. P(yp)(B) is by pullback
along yg x id,,, and sends ) to 0, yp X yp to yp X yp, and permutes A and
B.
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Now let X be the subpresheaf of P(yp) given by:
X(E)=0 X(D)={yp*xyp}

Then X is a ‘set of sets’ (a subobject of a power object), and clearly, in
X, the sentence Vry(x = y) is true. So X ‘has at most one element’. We
have the element relation €,, as a subobject of P(yp) X yp, and its re-
striction to a subobject of X x yp. This is the presheaf Z with Z(E) = ()
and Z(D) = {(yp X yp,idp), (yp X yp,B)}. So we see that the sentence
expressing ‘every element of X has exactly two elements’ is true. The
presheaf | J X of ‘elements of elements of X’ is the presheaf (| X)(E) = 0,
(UX)(D) ={idp, 8} as subpresheaf of yp. Now there cannot be any arrow
in Set®” from X to |J X, because, in X (D), the unique element is fixed by
the action of (3; however, in (| J X)(D) there is no fixed point for the action
of 3. Hence there is no ‘choice function’.
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2 Sheaves

In this chapter we shall generalize the notion of a ‘sheaf on a topological
space’ to arbitrary categories.

First, let us recall what a sheaf on a topological space is. Let X be
a space with set of opens O(X), considered as a poset with the inclusion
order.

A presheaf F on X is simply a presheaf on O(X). So for two opens
U CVin X we have F(U CV): F(V) — F(U), with the usual conditions.
F is called separated if for any two elements x, y of F'(U) and any open cover
U=U,;Uiof U,if F(U; CU)(x) =F(U; CU)(y) for all 4, then z = y.

F is called a sheaf, if for every system of elements z; € F(U;), indexed
by an open cover U = J; U; of U, such that for every pair 4,j we have
FU;NnU; C Uj)(x;) = F(U;NnU; C Uj)(zj), there is a unique element
x € F(U) such that z; = F(U; C U)(z) for each 1.

Such a system of elements z; is called a compatible family, and x is called
an amalgamation of it. The most common examples of sheaves on X are
sheaves of partial functions: F(U) is a set of functions U — Y (for example,
continuous functions to a space Y'), and F(U C V)(f) is the restriction of
ftoU.

Example. Let X be R with the discrete topology; for U C R let F(U) be
the set of injective functions from U to N. F' is separated, but not a sheaf
(check!).

In generalizing from O(X) to an arbitrary category C, we see that what we
lack is the notion of a ‘cover’. Because C is in general not a preorder, it will
not do to define a ‘cover of an object C” as a collection of objects (as in the
case of O(X)); rather, a cover of C' will be a sieve on C.

We shall denote the maximal sieve on C' by max(C).

Definition 2.1 Let C be a category. A Grothendieck topology on C specifies,
for every object C of C, a family Cov(C') of ‘covering sieves’ on C, in such
a way that the following conditions are satisfied:

i) max(C) € Cov(C)
ii) If R € Cov(C) then for every f: C' — C, f*(R) € Cov(C")

iii) If Ris asieve on C and S is a covering sieve on C, such that for every
arrow f : C" — C from S we have f*(R) € Cov(C"), then R € Cov(C)

We note an immediate consequence of the definition:
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Proposition 2.2 ) If R € Cov(C), S a sieve on C and R C S, then
S € Cov(C);

b) IfR,S € Cov(C) then RN S € Cov(C)

Proof. For a), just observe that for every f € R, f*(S) = max(C"); apply
i) and iii) of 2.1. For b), note that if f € R then f*(S) = f*(RNS), and
apply ii) and iii). ||

Definition 2.3 A wuniversal closure operation on Set®™ assigns to every
presheaf X an operation (-) : Sub(X) — Sub(X) such that the following
hold:

i

11

) A<A
)

v

iii) A<B=A<B
) For ¢:Y — X and A € Sub(X), ¢*(A) = ¢#(A)

Definition 2.4 A Lawvere- Tierney topology on Set®” is an arrow J : Q —
Q (where, as usual, §2 denotes the subobject classifier of SetcOp), such that
the following hold:

i) R C Jco(R) for every sieve R on C
ii) Jo(RNS)=Jo(R)NJc(5)
i) Jo(Jo(R)) = Jo(R)

Theorem 2.5 The following notions are equivalent (that is, each of them
determines the others uniquely):

1) A Grothendieck topolosy on C
2) A Lawvere-Tierney topology on Set®”
£C

3) A universal closure operation on Se

4) A full subcategory & of Set®™, such that the inclusion & — Set®” has
a left adjoint which preserves finite limits
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Proof. We first prove the equivalence of the first three notions; the equiva-
lence of these with notion 4 requires more work and is relegated to a separate
proof.

1) = 2). Given a Grothendieck topology Cov on C, define J : 2 — Q by

Jo(R) = {h: C' — C|h*(R) € Cov(C")}

If h : ¢ — C is an element of Jo(R) and g : C"” — C’ arbitrary, then
(hg)*(R) = g*(h*(R)) € Cov(C") so hg € Jo(R). Hence Jo(R) is a sieve on
C'. Similarly, J is a natural transformation: for f : C' — C we have

Jor(f*(R)) = {h:C" = C"[h*(f*(R)) € Cov(C")}

{h:C" — C'| (Fh)*(R) € Cov(C")}
_ (h:C" = C'[ fh € Jo(R)}
= f*(Je(R))

To prove R C Jo(R) we just apply condition i) of 2.1, since h*(R) = max(C")
for h € R.

By 2.2 we have RN S € Cov(C) if and only if both R € Cov(C) and
S € Cov(C), and together with the equation h*(RNS) = h*(R)Nh*(S) this
implies that Jo(RN S) = Jo(R) N Jeo(S).

Finally, since J preserves N, it preserves C (A C B iff ANB = A). We
have proved R C Jo(R), so Jo(R) C Jo(Jo(R)) follows. For the converse,
suppose h € Jo(Jo(R)) so h*(Jo(R)) € Cov(C”). We need to prove h*(R) €
Cov(C"). Now for any g € h*(Jo(R)) we have (hg)*(R) € Cov(C”) so
g*(h*(R)) € Cov(C"). Hence by condition iii) of 2.1, h*(R) € Cov(C").
This completes the proof that J is a Lawvere-Tierney topology.

2) = 3). Suppose we are given a Lawvere-Tierney topology J. Define the
operation (-) : Sub(X) — Sub(X) as follows: if A € Sub(X) is classified by
¢ : X — Q then A is classified by J¢. So

A(C) = {z € X(C) | Jc(¢c(z)) = max(C)}

Then if f : Y — X is a map of presheaves and A € Sub(X), both subobjects
f(A) and W are classified by Jof : Y — Q, hence they are equal. This
proves iv) of definition 2.3. i) follows from condition i) of 2.4 and ii) from
iii) of 2.4; finally, that (-) is order-preserving follows from the fact that J¢

preserves C.

3) = 1). Given a universal closure operation (-) on Set®”, we define
Cov(C) = {R € Q(C)| R = yc in Sub(yc)}. Under the identification of
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sieves on C' with subobjects of yc, f*(R) corresponds to (y;)*(R). So
from condition iv) in 2.3 it follows that if R € Cov(C) and f : C' — C,
f*(R) € Cov(C"). Condition i) (max(C) € Cov(C)) follows from i) of 2.3.
To prove iii) of 2.1, suppose R € Q(C), S € Cov(C) and for every
f:C"— Cin S we have f*(R) € Cov(C’). So S = yc and for all f € S,
yor = f*(R) = (yp)*(R) = f*(R). But that means that for all f € S, f € R.
So S C R; hence by iii) of 2.3, yc = S = R; but R = R by ii) of 2.3, so
yo = R, so R € Cov(C), as desired. ||

As said in the beginning of this proof, the equivalence of 4) with the other
notions requires more work. We start with some definitions.
Definition 2.6 Let Cov be a Grothendieck topology on C, and (-) the as-
sociated universal closure operation on Set®” .

A presheaf F' is separated for Cov if for each C € Cy and z,y € F(C), if
the sieve {f : ¢! — C'| F(f)(z) = F(f)(y)} covers C, then = = y.

A subpresheaf G of F is closed if G = G in Sub(F).

A subpresheaf G of F is dense if G = F in Sub(F).

Exercise 16 i) A subpresheaf G of F is closed if and only if for each
xe F(O):if{f:C"—= C|F(f)(x) € G(C")} covers C, then x € G(C)

ii) F is separated if and only if the diagonal: F — F x F is a closed
subobject (this explains the term ‘separated’ in French, the word
‘séparé’ is synonymous with ‘Hausdorff”)

iii) A subpresheaf G of F' is dense if and only if for each x € F(C), the
sieve {f : C' — C | F(f)(z) € G(C")} is covering

iv) A sieve R on C, considered as subobject of y¢, is dense if and only if
it is covering

Definition 2.7 Let F' be a presheaf, C' an object of C. A compatible family
in F'at C is a family (x| f € R) indexed by a sieve R on C, of elements
zy € F(dom(f)), such that for f: ¢/ — C in R and g : C" — C’ arbitrary,
xfqg = F(g)(xs). In other words, a compatible family is an arrow R — F
in Set®”. An amalgamation of such a compatible family is an element
x of F(C) such that vy = F(f)(z) for all f € R. In other words, an
amalgamation is an extension of the map R — F to a map yo — F.

Exercise 17 F is separated if and only if each compatible family in F
indexed by a covering sieve, has at most one amalgamation.
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Definition 2.8 F'is a sheaf if every compatible family in F', indexed by a
covering sieve, has ezxactly one amalgamation.

Exercise 18 Suppose G is a subpresheaf of F. If G is a sheaf, then G is
closed in Sub(F"). Conversely, every closed subpresheaf of a sheaf is a sheaf.

Example. Let Y be a presheaf. Define a presheaf Z as follows: Z(C)
consists of all pairs (R, ¢) such that R € Cov(C) and ¢ : R — Y is an arrow
in Set®”. If f: C' — C then Z(f)(R,¢) = (f*(R),¢f') where f’ is such
that

rerR LR

|

Yer o Yo

is a pullback.

Suppose we have a compatible family in Z, indexed by a covering sieve .S
on C. So for each f € S, f:C" — C thereis Ry € Cov(C’), ¢5: Ry =Y,
such that for g : C" — C” we have that Ry, = ¢"(Ry) and ¢4 : Ry — Y is
¢rg’ where ¢’ : Ry, — Ry is the pullback of y4 : yor — yer.

Then this family has an amalgamation in Z: define T' € Cov(C) by
T = {fg|f € S,9 € Rf}. T is covering since for every f € S we have
R; C f*(T). We can define x : T'— Y by x(fg) = ¢¢(g). So the presheaf
Z satisfies the ‘existence’ part of the amalgamation condition for a sheaf. It
does not in general satisfy the uniqueness part.

Exercise 19 Prove that F'is a sheaf if and only if for every presheaf X and
every dense subpresheaf A of X, any arrow A — F has a unique extension
to an arrow X — F.

The ‘plus’ construction. We define, for every presheaf X on C, a presheaf
Xt as follows. XT(C) is the set of equivalence classes of pairs (R, ¢) with
R € Cov(C) and ¢ : R — X, where (R, ¢) ~ (S,%) holds if and only if there
is a covering sieve T on C, such that T'C RN S and ¢ and v agree on T.
Since Cov(C) is closed under intersections, this is evidently an equivalence
relation.

The construction (-)* is a functor Set®” — Set®”: for f : X — Y
define (f)* : X — Yt by (f)4(R,¢) = (R, f¢). This is well-defined on
equivalence classes.

We have a natural transformation ¢ from the identity on Set®” to (-)
((x)c(x) = (yo,¢) where ¢ : yo — X corresponds to z in the Yoneda
Lemma (¢c(ide) = ).

+:
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The following lemma is ‘by definition’.
Lemma 2.9 Let X be a presheaf on C.
i) X is separated if and only if (x is mono.
i) X is a sheaf if and only if (x is an isomorphism.

Lemma 2.10 Let X be a presheaf, F' a sheaf, g : X — F an arrow in
Set. Then g factors through Cx : X — X via a unique §: X+ — F:

x—2——F

A
/
N

X+

@

Proof. For [(R,¢)] € XT(C), define go([(R, ¢)]) to be the unique amalga-
mation in F(C) of the composite g¢ : R — F. This is well-defined, for if
(R, ¢) ~ (S,1) then for some covering sieve T' C RN S we have that g¢ and
gy agree on T'; hence they have the same amalgamation. Convince yourself
that g is natural. By inspection, the diagram commutes, and g is the unique
arrow with this property. [ |

Lemma 2.11 For every presheaf X, X is separated.

Proof. For, suppose (R,¢) and (5,1)) are representatives of elements of
X*(C) such that, for some covering sieve T of C' it holds that for each
f € T there is a cover Ty C F*(R) N f*(S) such that ¢f" and ¢ f” agree on
Ty, where f’ and f” are as in the pullback diagrams

FRL R s

N R

Ycr T} Yyc Yer T) Yo

Let U={fg|f €T, g€ Ts}. Then U is a covering sieve on C, U C RN S,
and ¢ and ¥ agree on U. Hence (R, ¢) ~ (S,v), so they represent the same
element of X (C). | |

Lemma 2.12 If X is separated, X is a sheaf.
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Proof. Suppose we have a compatible family in X, indexed by a covering
sieve R on C. So for each f: C' — C in R we have (Ry,¢y), ¢5: R — X.
In order to find an amalgamation, we define a sieve S and a map ¥ :
S — X by:
S = {fglf€R,ge Ry}
V(fg) = ér(9)

Certainly S is a covering sieve on C, but it is not a priori clear that v is
well-defined. For it may be the case that for f, f' € R, g € Ry and ¢’ € Ry,

fg=f'g"
Ol
N
c" C
DA
D

We need to show that in this case, ¢f(g) = ¢ (g').

The fact that we have a compatible family means that (¢*(Ry),¢sh) ~
((¢")*(Ry), ¢ 1) in the equivalence relation defining X+ (C”), where h and
h' are as in the pullback diagrams

g*(Rp) - Ry (¢)*(Rp) — Ry

Y .

Yor T) Yyer Yer T) YD
That means that there is a covering sieve 7" on C” such that T' C ¢g*(Rs) N
(¢")*(Ry) on which ¢¢h and ¢k’ coincide; hence, for all k € T we have
that X(k)(¢f(9)) = X(k)(¢s(¢')). Since X is separated by assumption,
67(9) = dp(g') as desired.
We have obtained an amalgamation. It is unique because X T is sepa-
rated by lemma 2.11. [ |

The functor a : Set®” — Set®” is defined by applying (-)* twice: a(X) =
XTT. By lemmas 2.11 and 2.12, a(X) is always a sheaf. There is a nat-
ural transformation n from the identity to a obtained by the composition

X & xt S xtt = a(X); by twice applying lemma 2.10 one sees that
every arrow from a presheaf X to a sheaf F' factors uniquely through n.
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This exhibits 7 as the unit of an adjunction between Set®” and its full sub-
category of sheaves. If we denote the latter by Sh(C, Cov) and regard a as a
functor Set®” — Sh(C, Cov), then a is left adjoint to the inclusion functor.

The functor a is usually called sheafification, or the associated sheaf
functor.

Lemma 2.13 The sheafification functor preserves finite limits.

Proof. It is enough to show that (-)* preserves the terminal object and
pullbacks. That (-)* preserves 1 is obvious (1 is always a sheaf). Suppose

X =Y

L]

ZT>V

is a pullback diagram. In order to show that also its (-)*-image is, suppose
(R,¢) and (S,1) represent elements of Y (C), ZT(C), respectively, such
that (R, f¢) ~ (S,g) in the equivalence relation defining V' (C). Then
there is a covering sieve T'C R N S such that the square

T—Y

L b

Z—gV

commutes. By the pullback property, there is a unique factoring map Y :
T — X; that is, an element (T, x) of X T (C') such that [(R, ¢)] = vt ([(T, x)])
and [(S,v)] = v ([(T,x)]), which shows that the (-)*-image of the given
diagram is a pullback. [ |

We now wrap up to finish the proof of Theorem 2.5: every Grothendieck
topology gives a category of sheaves, which is a full subcategory of Set®””
such that the inclusion has a left adjoint a which preserves finite limits by
2.13.

Conversely, suppose such a full subcategory £ of Set®” is given, with
inclusion i : €& — Set®” and left adjoint r : Set®” — &, r preserving finite
limits. This then determines a universal closure operation as follows. Given
a subpresheaf A of X, define A as given by the pullback:

A——ir(A)

|
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where 1 : X — ir(X) is the unit of the adjunction » 4 ¢. Since r preserves
finite limits, ir preserves monos, so the map A — X is monic. Writing
down the naturality square for ) for the inclusion A — X we see that this
inclusion factors through A — X, so A < A. It is immediate that () is order-
preserving; and because ¢ is full and faithful so ri is naturally isomorphic
to the identity on &, ir is (up to isomorphism) idempotent, from which it
is easy to deduce that A = A. The final property of a universal closure
operation, stability under pullback, follows again from the fact that r, and

hence ir, preserves pullbacks. [ |

2.1 Examples of Grothendieck topologies

1. Asalways, there are the two trivial extremes. The smallest Grothendieck
topology (corresponding to the maximal subcategory of sheaves) has
Cov(C) = {max(C)} for all C. The only dense subpresheaves are the
maximal ones; every presheaf is a sheaf.

2. The other extreme is the biggest Grothendieck topology: Cov(C) =
Q(C). Every subpresheaf is dense; the only sheaf is the 