
Topos Theory

I. Moerdijk and J. van Oosten

Department of Mathematics

Utrecht University

2007

Contents

1 Presheaves 1
1.1 Recovering the category from its presheaves? 8
1.2 The Logic of Presheaves . 9

1.2.1 First-order structures in categories of presheaves . . . 11
1.3 Two examples and applications 14

1.3.1 Kripke semantics . 14
1.3.2 Failure of the Axiom of Choice 16

2 Sheaves 19
2.1 Examples of Grothendieck topologies 27
2.2 Structure of the category of sheaves 28
2.3 Application: a model for the independence of the Axiom of

Choice . 33
2.4 Application: a model for “every function from reals to reals

is continuous” . 36

3 The Effective Topos 41
3.1 Some subcategories and functors 43
3.2 Structure of Eff . 44

3.2.1 Finite products . 44
3.2.2 Exponentials . 45
3.2.3 Natural numbers object 46
3.2.4 Finite Coproducts . 47
3.2.5 Finite limits . 48
3.2.6 Monics and the subobject classifier 49

3.3 Intermezzo: interpretation of languages and theories in toposes 53
3.4 Elements of the logic of Eff 60

4 Morphisms between toposes 64

5 Literature 69

i

1 Presheaves

We start by reviewing the category SetC
op

of contravariant functors from C
to Set. C is assumed to be a small category throughout. Objects of SetC

op

are called presheaves on C.
We have the Yoneda embedding y : C → SetC

op
; we write its effect on

objects C and arrows f as yC , yf respectively. So for f : C → D we have
yf : yC → yD. Recall: yC(C ′) = C(C ′, C), the set of arrows C ′ → C in
C; for α : C ′′ → C ′ we have yC(α) : yC(C ′) → yC(C ′′) which is defined by
composition with α, so yC(α)(g) = gα for g : C ′ → C. For f : C → D we
have yf : yC → yD which is a natural transformation with components

(yf)C′ : yC(C ′) → yD(C ′)

given by (yf)C′(g) = fg. Note, that the naturality of yf is just the associa-
tivity of composition in C.

Presheaves of the form yC are called representable.
The Yoneda Lemma says that there is a 1-1 correspondence between

elements of X(C) and arrows in SetC
op

from yC to X, for presheaves X and
objects C of C, and this correspondence is natural in bothX and C. To every
element x ∈ X(C) corresponds a natural transformation µ : yC → X such
that (µ)C(idC) = x; and natural transformations from yC are completely
determined by their effect on idC . An important consequence of the Yoneda
lemma is that the Yoneda embedding is actually an embedding, that is: full
and faithful, and injective on objects.

Examples of presheaf categories

1. A first example is the category of presheaves on a monoid (a one-
object category) M . Such a presheaf is nothing but a set X together
with a right M -action, that is: we have a map X ×M → X, written
x, f 7→ xf , satisfying xe = x (for the unit e of the monoid), and
(xf)g = x(fg). There is only one representable presheaf.

2. If the category C is a poset (P,≤), for p ∈ P we have the representable
yp with yp(q) = {∗} if q ≤ p, and ∅ otherwise. So we can identify the
representable yp with the downset ↓(p) = {q | q ≤ p}.

3. The category of directed graphs and graph morphisms is a presheaf
category: it is the category of presheaves on the category with two
objects e and v, and two non-identity arrows σ, τ : v → e. For a
presheaf X on this category, X(v) can be seen as the set of vertices,

1

X(e) the set of edges, and X(σ), X(τ) : X(e) → X(v) as the source
and target maps.

4. A tree is a partially ordered set T with a least element, such that for
any x ∈ T , the set ↓(x) = {y ∈ T | y ≤ x} is a finite linearly ordered
subset of T . A morphism of trees f : T → S is an order-preserving
function wth the property that for any element x ∈ T , the restriction
of f to ↓(x) is a bijection from ↓(x) to ↓(f(x)). A forest is a set of
trees; a map of forests X → Y is a function φ : X → Y together with
an X-indexed collection (fx |x ∈ X) of morphisms of trees such that
fx : x → φ(x). The category of forests and their maps is just the
category of presheaves on ω, the first infinite ordinal.

Recall the definition of the category y↓X (an example of a ‘comma cat-
egory’ construction): objects are pairs (C, µ) with C an object of C and
µ : yC → X an arrow in SetC

op
. A morphism (C, µ) → (C ′, ν) is an arrow

f : C → C ′ in C such that the triangle

yC

µ
!!B

BB
BB

BB
B

yf
// yC′

ν
}}{{

{{
{{

{{

X

commutes.
Note that if this is the case and µ : yC → X corresponds to ξ ∈ X(C)

and ν : yC′ → X corresponds to η ∈ X(C ′), then ξ = X(f)(η).
There is a functor UX : y↓X → C (the forgetful functor) which sends

(C, µ) to C and f to itself; by composition with y we get a diagram

y◦UX : y↓X → SetC
op

Clearly, there is a natural transformation ρ from y◦UX to the constant
functor ∆X from y↓X to SetC

op
with value X: let ρ(C,µ) = µ : yC → X. So

there is a cocone in SetC
op

for y◦UX with vertex X.

Proposition 1.1 The cocone ρ : y◦UX ⇒ ∆X is colimiting.

Proof. Suppose λ : y◦UX ⇒ ∆Y is another cocone. Define ν : X → Y by
νC(ξ) = (λ(C,µ))C(idC), where µ : yC → X corresponds to ξ in the Yoneda
Lemma.

2

Then ν is natural: if f : C ′ → C in C and µ′ : yC′ → X corresponds to
X(f)(ξ), the diagram

yC′

µ′

!!C
CC

CC
CC

C

yf
// yC

µ
}}||

||
||

||

X

commutes, so f is an arrow (C ′, µ′) → (C, µ) in y↓X. Since λ is a cocone,
we have that

yC′

λ(C′,µ′) !!C
CC

CC
CC

C

yf
// yC

λ(C,µ)~~||
||

||
|

Y

commutes; so

νC′(X(f)(ξ)) = (λ(C′ ,µ′))C′(idC′) =

(λ(C,µ))C′((yf)C′(idC′)) = (λ(C,µ))C′(f) =

Y (f)((λ(C,µ))C(idC)) = Y (f)(νC(ξ))

It is easy to see that λ : y◦UX ⇒ ∆Y factors through ρ via ν, and that the
factorization is unique.

Proposition 1.1 is often referred to by saying that “every presheaf is a colimit
of representables”.

Let us note that the category SetC
op

is complete and cocomplete, and that
limits and colimits are calculated ‘pointwise’: if I is a small category and
F : I → SetC

op
is a diagram, then for every object C of C we have a diagram

FC : I → Set by FC(i) = F (i)(C); if XC is a colimit for this diagram in
Set, there is a unique presheaf structure on the collection (XC |C ∈ C0)
making it into the vertex of a colimit for F . The same holds for limits.
Some immediate consequences of this are:

i) an arrow µ : X → Y in SetC
op

is mono (resp. epi) if and only if every
component µC is an injective (resp. surjective) function of sets;

ii) the category SetC
op

is regular, and every epimorphism is a regular epi;

iii) the initial object of SetC
op

is the constant presheaf with value ∅;

iv) X is terminal in SetC
op

if and only if every set X(C) is a singleton;

v) for every presheaf X, the functor (−) ×X : SetC
op

→ SetC
op

preserves
colimits.

3

Furthermore we note the following fact: the Yoneda embedding C → SetC
op

is the ‘free colimit completion’ of C. That is: for any functor F : C → D
where D is a cocomplete category, there is, up to isomorphism, exactly one
colimit preserving functor F̃ : SetC

op
→ D such that the diagram

C

y
""E

EE
EEEEE

F // D

SetC
op

F̃

<<yyyyyyyy

commutes. F̃ (X) is computed as the colimit in D of the diagram

y↓X
UX→ C

F
→ D

The functor F̃ is also called the ‘left Kan extension of F along y’.

We shall now calculate explicitly some structure of SetC
op

. Exponentials
can be calculated using the Yoneda Lemma and proposition 1.1. For Y X ,
we need a natural 1-1 correspondence

SetC
op

(Z, Y X) ' SetC
op

(Z ×X,Y)

In particular this should hold for representable presheaves yC ; so, by the
Yoneda Lemma, we should have a 1-1 correspondence

Y X(C) ' SetC
op

(yC ×X,Y)

which is natural in C. This leads us to define a presheaf Y X by: Y X(C) =
SetC

op
(yC ×X,Y), and for f : C ′ → C we let Y X(f) : Y X(C) → Y X(C ′) be

defined by composition with yf × idX : yC′ ×X → yC ×X. Then certainly,
Y X is a well-defined presheaf and for representable presheaves we have the
natural bijection SetC

op
(yC , Y

X) ' SetC
op

(yC × X,Y) we want. In order
to show that it holds for arbitrary presheaves Z we use proposition 1.1.
Given Z, we have the diagram y◦UZ : y↓Z → C → SetC

op
of which Z is a

colimit. Therefore arrows Z → Y X correspond to cocones on y◦UZ with
vertex Y X . Since we have our correspondence for representables yC , such
cocones correspond to cocones on the diagram

y↓Z
UZ→ C

y
→ SetC

op (−)×X
→ SetC

op

with vertex Y . Because, as already noted, the functor (−) × X preserves
colimits, these correspond to arrows Z ×X → Y , as desired.

4

It is easy to see that the construction of Y X gives a functor (−)X :
SetC

op
→ SetC

op
which is right adjoint to (−) × X, thus establishing that

SetC
op

is cartesian closed. The evaluation map evX,Y : Y X ×X → Y is given
by

(φ, x) 7→ φC(idC , x)

Exercise 1 Show that the map evX,Y , thus defined, is indeed a natural
transformation.

Exercise 2 Prove that y : C → SetC
op

preserves all limits which exist in C.
Prove also, that if C is cartesian closed, y preserves exponents.

Another piece of structure we shall need is that of a subobject classifier.
Suppose E is a category with finite limits. A subobject classifier is a

monomorphism t : T → Ω with the property that for any monomorphism
m : A → B in E there is a unique arrow φ : B → Ω such that there is a
pullback diagram

A

m

��

// T

t

��

B
φ

// Ω

We say that the unique arrow φ classifies m or rather, the subobject rep-
resented by m (if m and m′ represent the same subobject, they have the
same classifying arrow). In Set, any two element set {a, b} together with a
specific choice of one of them, say b (considered as arrow 1 → {a, b}) acts as
a subobject classifier: for A ⊂ B we have the unique characteristic function
φA : B → {a, b} defined by φA(x) = b if x ∈ A, and φA(x) = a otherwise.

It is no coincidence that in Set, the domain of t : T → Ω is a terminal
object: T is always terminal. For, for any object A the arrow φ : A → Ω
which classifies the identity on A factors as tn for some n : A→ T . On the
other hand, if k : A→ T is any arrow, then we have pullback diagrams

A

idA

��

k // T

idT

��

idT // T

t

��

A
k

// T
t

// Ω

so tk classifies idA. By uniqueness of the classifying map, tn = tk; since t

is mono, n = k. So T is terminal. Henceforth we shall write 1
t
→ Ω for the

subobject classifier, or, by abuse of language, just Ω.

5

Note: if 1
t
→ Ω is a subobject classifier in E then we have a 1-1 corre-

spondence between arrows A
φ
→ Ω and subobjects of A. This correspondence

is natural in the following sense: given f : B → A and a subobject U of A;
by f](U) we denote the subobject of B obtained by pulling back U along f .
Then if φ classifies U , φf classifies f](U).

First a remark about subobjects in SetC
op

. A subobject of X can be
identified with a subpresheaf of X: that is, a presheaf Y such that Y (C) ⊆
X(C) for each C, and Y (f) is the restriction of X(f) to Y (cod(f)). This
follows easily from epi-mono factorizations pointwise, and the corresponding
fact in Set.

Again, we use the Yoneda Lemma to compute the subobject classifier
in SetC

op
. We need a presheaf Ω such that at least for each representable

presheaf yC , Ω(C) is in 1-1 correspondence with the set of subobjects (in
SetC

op
) of yC . So we define Ω such that Ω(C) is the set of subpresheaves of

yC ; for f : C ′ → C we have Ω(f) defined by the action of pulling back along
yf .

What do subpresheaves of yC look like? If R is a subpresheaf of yC then
R can be seen as a set of arrows with codomain C such that if f : C ′ → C
is in R and g : C ′′ → C ′ is arbitrary, then fg is in R (for, fg = yC(g)(f)).
Such a set of arrows is called a sieve on C.

Under the correspondence between subobjects of yC and sieves on C,
the operation of pulling back a subobject along a map yf (for f : C ′ → C)
sends a sieve R on C to the sieve f ∗(R) on C ′ defined by

f∗(R) = {g : D → C ′ | fg ∈ R}

So Ω can be defined as follows: Ω(C) is the set of sieves on C, and Ω(f)(R) =
f∗(R). The map t : 1 → Ω sends, for each C, the unique element of 1(C) to
the maximal sieve on C (i.e., the unique sieve which contains idC).

Exercise 3 Suppose C is a preorder (P,≤). For p ∈ P we let ↓(p) = {q ∈
P | q ≤ p}. Show that sieves on p can be identified with downwards closed
subsets of ↓(p). If we denote the unique arrow q → p by qp and U is a
downwards closed subset of ↓(p), what is (qp)∗(U)?

Let us now prove that t : 1 → Ω, thus defined, is a subobject classifier
in SetC

op
. Let Y be a subpresheaf of X. Then for any C and any x ∈ X(C),

the set
φC(x) = {f : D → C |X(f)(x) ∈ Y (D)}

6

is a sieve on C, and defining φ : X → Ω in this way gives a natural trans-
formation: for f : C ′ → C we have

φC′(X(f)(x)) = {g : D → C ′ |X(g)(X(f)(x)) ∈ Y (D)}
= {g : D → C ′ |X(gf)(x) ∈ Y (D)}
= {g : D → C ′ | fg ∈ φC(x)}
= f∗(φC(x))
= Ω(f)(φC(x))

Moreover, if we take the pullback of t along φ, we get the subpresheaf of X
consisting of (at each object C) of those elements x for which idC ∈ φC(x);
that is, we get Y . So φ classifies the subpresheaf Y .

On the other hand, if φ : X → Ω is any natural transformation such
that pulling back t along φ gives Y , then for every x ∈ X(C) we have that
x ∈ Y (C) if and only if idC ∈ φC(x). But then by naturality we get for any
f : C ′ → C that

X(f)(x) ∈ Y (C ′) ⇔ idC′ ∈ f∗(φC(x)) ⇔ f ∈ φC(x)

which shows that the classifying map φ is unique.
Combining the subobject classifier with the cartesian closed structure, we

obtain power objects. In a category E with finite products, we call an object
A a power object of the object X, if there is a natural 1-1 correspondence

E(Y,A) ' SubE(Y ×X)

The naturality means that if f : Y → A and g : Z → Y are arrows in E and
f corresponds to the subobject U of Y ×X, then fg : Z → A corresponds
to the subobject (g × idX)](U) of Z ×X.

Power objects are unique up to isomorphism; the power object of X,
if it exists, is usually denoted P(X). Note the following consequence of
the definition: to the identity map on P(X) corresponds a subobject of
P(X)×X which we call the “element relation” ∈X ; it has the property that
whenever f : Y → P(X) corresponds to the subobject U of Y × X, then
U = (f × idX)](∈X).

Convince yourself that power objects in the category Set are just the
familiar power sets.

In a cartesian closed category with subobject classifier Ω, power objects
exist: let P(X) = ΩX . Clearly, the defining 1-1 correspondence is there.

P(X)(C) = Sub(yC ×X)

with action P(X)(f)(U) = (yf × idX)](U).

7

Exercise 4 Show that P(X)(C) = Sub(yC ×X) and that, for f : C ′ → C,
P(X)(f)(U) = (yf × idX)](U). Prove also, that the element relation, as a
subpresheaf ∈X of P(X) ×X, is given by

(∈X)(C) = {(U, x) ∈ Sub(yC ×X) ×X(C) | (idC , x) ∈ U(C)}

Definition 1.2 A topos is a category with finite limits, which is cartesian
closed and has a subobject classifier.

1.1 Recovering the category from its presheaves?

In this short section we shall see to what extent the category SetC
op

deter-
mines C. In other words, suppose SetC

op
and SetD

op
are equivalent categories;

what can we say about C and D?

Definition 1.3 In a regular category an object P is called (regular) projec-
tive if for every regular epi f : A → B, any arrow P → B factors through
f . Equivalently, every regular epi with codomain P has a section.

Exercise 5 Prove the equivalence claimed in definiton 1.3.

Definition 1.4 An object X is called indecomposable if whenever X is a
coproduct

∐

i Ui, then for exactly one i the object Ui is not initial.
Note, that an initial object is not indecomposable, just as 1 is not a

prime number.

In SetC
op

, coproducts are stable, which means that they are preserved by
pullback functors; this is easy to check. Another triviality is that the initial
object is strict : the only maps into it are isomorphisms.

Proposition 1.5 In SetC
op

, a presheaf X is indecomposable and projective
if and only if it is a retract of a representable presheaf: there is a diagram

X
i
→ yC

r
→ X with ri = idX .

Proof. Check yourself that every retract of a projective object is again pro-
jective. Similarly, a retract of an indecomposable object is indecomposable:

if X
i
→ Y

r
→ X is such that ri = idX and Y is indecomposable, any presen-

tation of X as a coproduct
∐

i Ui can be pulled back along r to produce, by
stability of coproducts, a presentation of Y as coproduct

∐

i Vi such that

Vi

��

// Y

r

��

Ui
//X

8

is a pullback; for exactly one i then, Vi is non-initial; hence since r is epi and
the initial object is strict, for exactly one i we have that Ui is non-initial. We
see that the property of being projective and indecomposable is inherited by
retracts. Moreover, every representable is indecomposable and projective,
as we leave for you to check.

Conversely, assume X is indecomposable and projective. By proposi-
tion 1.1 and the standard construction of colimits from coproducts and co-
equalizers, there is an epi

∐

i yCi
→ X from a coproduct of representables.

Since X is projective, this epi has a section ι. Pulling back along ι we get a
presentation of X as a coproduct

∐

i Vi such that

Vi

��

//X

ι

��

yCi
//
∐

i yCi

is a pullback diagram. X was assumed indecomposable, so exactly one Vi is
non-initial. But this means that X is a retract of yCi

.

If X is a retract of yC , say X
µ
→ yC

ν
→ X with νµ = idX , consider µν :

yC → yC . This arrow is idempotent : (µν)(µν) = µ(νµ)ν = µν, and since the
Yoneda embedding is full and faithful, µν = ye for an idempotent e : C → C
in C.

A category C is said to be Cauchy complete if for every idempotent

e : C → C there is a diagram D
i
→ C

r
→ D with ri = idD and ir = e. One

also says: “idempotents split”. In the situation above (where X is a retract
of yC) we see that X must then be isomorphic to yD for a retract D of C in
C. We conclude:

Theorem 1.6 If C is Cauchy complete, C is equivalent to the full subcat-
egory of SetC

op
on the indecomposable projectives. Hence if C and D are

Cauchy complete and SetC
op

and SetD
op

are equivalent, so are C and D.

Exercise 6 Show that if C has equalizers, C is Cauchy complete.

1.2 The Logic of Presheaves

Definition 1.7 A Heyting algebra H is a lattice (⊥,>,∨,∧) together with
a binary operation → (called Heyting implication), which satisfies the fol-
lowing equivalence for all a, b, c ∈ H:

a ∧ b ≤ c ⇔ a ≤ b→ c

9

Exercise 7 Prove that every Heyting algebra, as a lattice, is distributive:
x∧ (y ∨ z) = (x∧ y)∨ (x∧ z) and x∨ (y ∧ z) = (x∨ y)∧ (x∨ z) hold, for all
x, y, z ∈ H.

For a presheaf X we shall write Sub(X) for the set of subpresheaves of X.
So if φ : X → Y in SetC

op
we gave φ] : Sub(Y) → Sub(X) by pulling back.

Theorem 1.8 Every poset Sub(X) is a Heyting algebra. For every φ :
Y → X, the map φ] commutes with the Heyting structure (⊥,>,∧,∨,→
). Moreover, φ] has both a right and a left adjoint, denoted ∀φ and ∃φ

respectively.

Proof. Since limits and colimits are computed pointwise, ∧ and ∨ (between
subpresheaves) are given by pointwise intersection and union, respectively.
The empty subpresheaf is, of course, the bottom element of Sub(X), and X
itself is the top element. Heyting implication is not done pointwise, since if
A and B are subpresheaves of X, setting

(A→ B)(C) = {x ∈ X(C) |x ∈ A(C) ⇒ x ∈ B(C)}

does not necessarily define a subpresheaf of X (check this!). Therefore we
put

(A→ B)(C) = {x ∈ X(C) | ∀f : C ′ → C(X(f)(x) ∈ A(C ′) ⇒ X(f)(x) ∈ B(C ′))}

Then (A→ B) is a subpresheaf of X. It is easy to verify that if D is another
subpresheaf of X then D is a subpresheaf of (A → B) if and only if D ∩ A
is a subpresheaf of B.

Let us check that φ] preserves Heyting implication (the rest of the struc-
ture is left to you):

(φ](A) → φ](B))(C) =
{y ∈ Y (C)∀f : C ′ → C(Y (f)(y) ∈ φ](A)(C ′) ⇒

Y (f)(y) ∈ φ](B)(C ′))}

=
{y ∈ Y (C) | ∀f : C ′ → C(φC′(Y (f)(y)) ∈ A(C ′) ⇒

φC′(Y (f)(y)) ∈ B(C ′))}

=
{y ∈ Y (C) | ∀f : C ′ → C(X(f)(φC(y)) ∈ A(C ′) ⇒

X(f)(φC(y)) ∈ B(C ′))}
= {y ∈ Y (C) |φC(y) ∈ (A→ B)(C)}
= φ](A→ B)(C)

The left adjoint ∃φ(A) (where now A is a subpresheaf of Y) is, just as
in the case of regular categories, given by the image of A under φ, and this
is done pointwise. So,

∃φ(A)(C) = {x ∈ X(C) | ∃y ∈ A(C)(x = φC(y))}

10

Clearly then, if B is a subpresheaf of X, we have ∃φ(A) ≤ B in Sub(X) if
and only if A ≤ φ](B) in Sub(Y).

The right adjoint ∀φ(A) is given by

∀φ(A)(C) = {x ∈ X(C) | ∀f : D → C∀y ∈ Y (D)(φD(y) = x⇒ y ∈ A(D))}

Check for yourself that then, B ≤ ∀φ(A) in Sub(X) if and only if φ](B) ≤ A
in Sub(Y).

Exercise 8 Prove that for φ : Y → X, A a subpresheaf of X and B a
subpresheaf of Y ,

∃φ(φ](A) ∧B) = A ∧ ∃φ(B)

Which property of the map φ] do you need?

Exercise 9 Suppose X is a presheaf on C. Let S be the set of all those
C0-indexed collections of sets A = (AC | c ∈ C0) for which AC is a subset of
X(C) for each C. S is ordered pointwise: A ≤ B iff for each C, AC ⊆ BC .

Let ι : Sub(X) → S be the inclusion. Show that ι has both a left and a
right adjoint.

1.2.1 First-order structures in categories of presheaves

In any regular category which satisfies the properties of theorem 1.8 (such a
category is often called a ‘Heyting category’), one can extend the interpreta-
tion of ‘regular logic’ in regular categories to full first-order logic. We shall
retain as much as possible the notation from chapter 4 of ‘Basic Category
Theory’.

We have a language L, which consists of a collection of sorts S, T, . . .,
possibly constants cS of sort S, function symbols f : S1, . . . , Sn → S, and
relation symbols R ⊆ S1, . . . , Sn. The definition of formula is extended with
the clauses:

i) If ϕ and ψ are formulas then (ϕ ∨ ψ), (ϕ→ ψ) and ¬ϕ are formulas;

ii) if ϕ is a formula and xS a variable of sort S then ∀xSϕ is a formula.

For the notations FV (t) and FV (ϕ) we refer to the mentioned chapter 4.
Again, an interpretation assigns objects [[S]] to the sorts S, arrows to the
function symbols and subobjects to relation symbols. This then leads to
the definition of the interpretation of a formula ϕ as a subobject [[ϕ]] of
[[FV (ϕ)]], which is a chosen product of the interpretations of all the sorts

11

of the free variables of ϕ: if FV (ϕ) = {xS1
1 , . . . , xSn

n } then [[FV (ϕ)]] =
[[S1]] × · · · × [[Sn]].

The definition of [[ϕ]] of the mentioned chapter 4 is now extended by the
clauses:

i) If [[ϕ]] → [[FV (ϕ)]] and [[ψ]] → [[FV (ψ)]] are given and

[[FV (ϕ ∧ ψ)]]

π2
''OOOOOOOOOOO

π1 // [[FV (ϕ)]]

[[FV (ψ)]]

are the projections, then

[[ϕ ∨ ψ]] = (π1)
]([[ϕ]]) ∨ (π2)

]([[ψ]]) in Sub([[FV (ϕ ∧ ψ)]])
[[ϕ→ ψ]] = (π1)

]([[ϕ]]) → (π2)
]([[ψ]]) in Sub([[FV (ϕ ∧ ψ)]])

[[¬ϕ]] = [[ϕ]] → ⊥ in Sub([[FV (ϕ)]])

(Note that FV (ϕ ∧ ψ) = FV (ϕ ∨ ψ) = FV (ϕ→ ψ))

ii) if [[ϕ]] → [[FV (ϕ)]] is given and π : [[FV (ϕ)]] → [[FV (∃xϕ)]] is
the projection, let FV ′(ϕ) = FV (ϕ ∧ x = x) and π′ : [[FV ′(ϕ)]] →
[[FV (ϕ)]] the projection. Then

[[∀xϕ]] = ∀ππ′((π′)]([[ϕ]]))

We shall now write out what this means, concretely, in SetC
op

. For a formula
ϕ, we have [[ϕ]] as a subobject of [[FV (ϕ)]], hence we have a classifying map
{ϕ} : [[FV (ϕ)]] → Ω with components {ϕ}C : [[FV (ϕ)]](C) → Ω(C); for
(a1, . . . , an) ∈ [[FV (ϕ)]](C), {ϕ}C(a1, . . . , an) is a sieve on C.

Definition 1.9 For ϕ a formula with free variables x1, . . . , xn, C an object
of C and (a1, . . . , an) ∈ [[FV (ϕ)]](C), the notation C ϕ(a1, . . . , an) means
that idC ∈ {ϕ}C (a1, . . . , an).

The pronunciation of “” is ‘forces’.

Notation. For ϕ a formula with free variables xS1
1 , . . . , xSn

n , C an object of
C and (a1, . . . , an) ∈ [[FV (ϕ)]](C) as above, so ai ∈ [[Si]](C), if f : C ′ → C
is an arrow in C we shall write aif for [[Si]](f)(ai).

Note: with this notation and ϕ, C, a1, . . . , an, f : C ′ → C as above, we have
f ∈ {ϕ}C(a1, . . . , an) if and only if C ′ ϕ(a1f, . . . , anf).

Using the characterization of the Heyting structure of SetC
op

given in the
proof of theorem 1.8, we can easily write down an inductive definition for
the notion C ϕ(a1, . . . , an):

12

• C (t = s)(a1, . . . , an) if and only if [[t]]C(a1, . . . , an) = [[s]]C(a1, . . . , an)

• C R(t1, . . . , tk)(a1, . . . , an) if and only if

([[t1]]C(a1, . . . , an), . . . , [[tk]]C(a1, . . . , an)) ∈ [[R]](C)

• C (ϕ ∧ ψ)(a1, . . . , an) if and only if

C ϕ(a1, . . . , an) and C ψ(a1, . . . , an)

• C (ϕ ∨ ψ)(a1, . . . , an) if and only if

C ϕ(a1, . . . , an) or C ψ(a1, . . . , an)

• C (ϕ→ ψ)(a1, . . . , an) if and only if for every arrow f : C ′ → C,

if C ′ ϕ(a1f, . . . , anf) then C ′ ψ(a1f, . . . , anf)

• C ¬ϕ(a1, . . . , an) if and only if for no arrow f : C ′ → C, C ′

ϕ(a1f, . . . , anf)

• C ∃xSϕ(a1, . . . , an) if and only if for some a ∈ [[S]](C), C

ϕ(a, a1, . . . , an)

• C ∀xSϕ(a1, . . . , an) if and only if for every arrow f : C ′ → C and
every a ∈ [[S]](C ′),

C ′ ϕ(a, a1f, . . . , anf)

Exercise 10 Prove: if C ϕ(a1, . . . , an) and f : C ′ → C is an arrow, then
C ′ ϕ(a1f, . . . , anf).

Now let φ be a sentence of the language, so [[φ]] is a subobject of 1 in SetC
op

.
Note: a subobject of 1 is ‘the same thing’ as a collection X of objects of C
such that whenever C ∈ X and f : C ′ → C is arbitrary, then C ′ ∈ X also.
The following theorem is straightforward.

Theorem 1.10 For a language L and interpretation [[·]] of L in SetC
op

, we
have that for every L-sentence φ, [[φ]] = {C ∈ C0 |C φ}. Hence, φ is true
for the interpretation in SetC

op
if and only if for every C, C φ.

13

If Γ is a set of L-sentences and φ an L-sentence, we write Γ φ to mean:
in every interpretation in a presheaf category such that every sentence of Γ
is true, φ is true.

We mention without proof:

Theorem 1.11 (Soundness and Completeness) If Γ is a set of L-sentences
and φ an L-sentence, we have Γ φ if and only if φ is provable from Γ in
intuitionistic predicate calculus.

Intuitionistic predicate calculus is what one gets from classical logic by delet-
ing the rule which infers φ from a proof that ¬φ implies absurdity. In a
Gentzen calculus, this means that one restricts attention to those sequents
Γ ⇒ ∆ for which ∆ consists of at most one formula.

Exercise 11 Let N denote the constant presheaf with value N.

i) Show that there are maps 0 : 1 → N and S : N → N which make N
into a natural numbers object in SetC

op
.

ii) Accordingly, there is an interpretation of the language of first-order
arithmetic in SetC

op
, where the unique sort is interpreted by N . Prove,

that for this interpretation, a sentence in the language of arithmetic
is true if and only if it is true classically in the standard model N.

Exercise 12 Prove that for every object C of C, the set Ω(C) of sieves
on C is a Heyting algebra, and that for every map f : C ′ → C in C,
Ω(f) : Ω(C) → Ω(C ′) preserves the Heyting structure. Write out explicitly
the Heyting implication (R→ S) of two sieves.

1.3 Two examples and applications

1.3.1 Kripke semantics

Kripke semantics is a special kind of presheaf semantics: C is taken to be
a poset, and the sorts are interpreted by presheaves X such that for every
q ≤ p the map X(q ≤ p) : X(p) → X(q) is an inclusion of sets. Let us call
these presheaves Kripke presheaves.

The soundness and completeness theorem 1.11 already holds for Kripke
semantics. This raises the question whether the greater generality of presheaves
achieves anything new. In this example, we shall see that general presheaves
are richer than Kripke models if one considers intermediate logics: logics
stronger than intuitionistic logic but weaker than classical logic.

14

In order to warm up, let us look at Kripke models for propositional logic.
The propositional variables are interpreted as subobjects of 1 in SetK

op
(for a

poset (K,≤)); that means, as downwards closed subsets of K (see te remark
just before theorem 1.10). Let, for example, K be the poset:

0

k

@@�������

l

^^========

and let [[p]] = {k}. Then 0 6 p, 0 6 ¬p (since k ≤ 0 and k p) and 0 6 ¬¬p
(since l ≤ 0 and l ¬p). So p∨¬p∨¬¬p is not true for this interpretation.
Even simpler, if K = {0 ≤ 1} and [[p]] = {0}, then 1 6 p ∨ ¬p. However, if
K is a linear order, then (p→ q)∨ (q → p) is always true on K, since if K is
linear, then so is the poset of its downwards closed subsets. From this one
can conclude that if one adds to intuitionistic propositional logic the axiom
scheme

(φ→ ψ) ∨ (ψ → φ)

one gets a logic which is strictly between intuitionistic and classical logic.

Exercise 13 Prove that in fact, K is linear if and only if (p→ q)∨ (q → p)
is always true on K. Prove also, that ¬p ∨ ¬¬p is always true on K if and
only if K has the following property: whenever two elements have an upper
bound, they also have a lower bound.

Not only certain properties of posets can be characterized by the propo-
sitional logic they satisfy in the sense of exercise 13, also properties of
presheaves.

Exercise 14 Let X be a Kripke presheaf on a poset K. Show that the
following axiom scheme of predicate logic:

D ∀x(A(x) ∨B) → (∀xA(x) ∨B)

(where A and B may contain additional variables, but the variable x is not
allowed to occur in B) is always true in X, if and only if for every k ′ ≤ k in
K, the map X(k) → X(k′) is the identity.

Suppose now one considers the logic D-J, which is intuitionistic logic
extended with the axiom schemes ¬φ ∨ ¬¬φ and the axiom scheme D from
exercise 14. One might expect (in view of exercises 13 and 14) that this logic
is complete with respect to constant presheaves on posets K which have the
property that whenever two elements have an upper bound, they also have
a lower bound. However, this is not the case!

15

Proposition 1.12 Suppose X is a constant presheaf on a poset K which
has the property that whenever two elements have an upper bound, they also
have a lower bound. Then the following axiom scheme is always true on X:

∀x[(R→ (S ∨A(x))) ∨ (S → (R ∨A(x)))] ∧ ¬∀xA(x)
→

[(R → S) ∨ (S → R)]

Exercise 15 Prove proposition 1.12.

However, the axiom scheme in proposition 1.12 is not a consequence of the
logic D-J, which fact can be shown using presheaves. This was also shown
by Ghilardi. We give the relevant statements without proof; the interested
reader is referred to Arch.Math.Logic 29 (1989), 125–136.

Proposition 1.13 i) The axiom scheme ¬φ ∨ ¬¬φ is true in every in-
terpretation in SetC

op
if and only if the category C has the property that

every pair of arrows with common codomain fits into a commutative
square.

ii) Let X be a presheaf on a category C. Suppose X has the property that
for all f : C ′ → C in C, all n ≥ 0, all x1, . . . , xn ∈ X(C) and all
y ∈ X(C ′) there is f ′ : C ′ → C and x ∈ X(C) such that xf = y and
x1f = x1f

′, . . . , xnf = xnf
′. Then for every interpretation on X the

axiom scheme D of exercise 14 is true.

iii) There exist a category C satisfying the property of i), and a presheaf
X on C satisfying the property of ii), and an interpretation on X for
which an instance of the axiom scheme of proposition 1.12 is not true.

1.3.2 Failure of the Axiom of Choice

In this example, due to M. Fourman and A. Scedrov (Manuscr. Math. 38
(1982), 325–332), we explore a bit the higher-order structure of a presheaf
category. Recall that the Axiom of Choice says: if X is a set consisting of
nonempty sets, there is a function F : X →

⋃

X such that F (x) ∈ x for
every x ∈ X. This axiom is not provable in Zermelo-Fraenkel set theory,
but it is classically totally unproblematic for finite X (induction on the
cardinality of X).

We exhibit here a category C, a presheaf Y on C, and a subpresheaf X of
the power object P(Y) such that the following statements are true in SetC

op
:

∀αβ ∈ X(α = β) (“X has at most one element”)

16

∀α ∈ X∃xy ∈ Y (x 6= y ∧ ∀z ∈ Y (z ∈ α ↔ z = x ∨ z = y)) (“every
element of X has exactly two elements”)

There is no arrow X →
⋃

X (this is stronger than: X has no choice
function).

Consider the category C with two objects and two non-identity arrows:

Dβ
88

α // E

subject to the equations β2 = idD and αβ = α.
We calculate the representables yD and yE, and the map yα : yD → yE:

yD(E) = ∅ (yα)D(idD) = α
yD(D) = {idD, β} (yα)D(β) = α
yD(α) is the empty function (yα)E is the empty function
yD(β)(idD) = β yD(β)(β) = idD

Since E is terminal in C, yE is a terminal object in SetC
op

:

yE(E) = {idE}, yE(D) = {α}, yE(α)(idE) = α, yE(β)(α) = α

Now let us calculate the power object P(yD). According to the explicit
construction of power objects in presheaf categories, we have

P(yD)(E) = Sub(yE × yD)
P(yD)(D) = Sub(yD × yD)

(yE × yD)(D) is the two-element set {(α, idD), (α, β)} which are permuted
by the action of β, and (yE × yD)(E) = ∅. So we see that Sub(yE × yD) has
two elements: ∅ (the empty presheaf) and yE × yD itself. (yD × yD)(D) has
4 elements: (idD, β), (β, idD), (β, β), (idD, idD) and we have: (idD, β)β =
(β, idD) and (β, β)β = (idD, idD).

So Sub(yD × yD) has 4 elements: ∅, yD × yD, A,B where A and B are
such that

A(E) = ∅ A(D) = {(idD, β), (β, idD)}
B(E) = ∅ B(D) = {(β, β), (idD, idD)}

Summarizing: we have P(yD)(E) = {∅, yE × yD}, P(yD)(D) = {∅, yD ×
yD, A,B}. The map P(yD)(α) is given by pullback along yα × idyD

and
sends therefore ∅ to ∅ and yE × yD to yD × yD. P(yD)(β) is by pullback
along yβ × idyD

and sends ∅ to ∅, yD × yD to yD × yD, and permutes A and
B.

17

Now let X be the subpresheaf of P(yD) given by:

X(E) = ∅ X(D) = {yD × yD}

Then X is a ‘set of sets’ (a subobject of a power object), and clearly, in
X, the sentence ∀xy(x = y) is true. So X ‘has at most one element’. We
have the element relation ∈yD

as a subobject of P(yD) × yD, and its re-
striction to a subobject of X × yD. This is the presheaf Z with Z(E) = ∅
and Z(D) = {(yD × yD, idD), (yD × yD, β)}. So we see that the sentence
expressing ‘every element of X has exactly two elements’ is true. The
presheaf

⋃

X of ‘elements of elements of X’ is the presheaf (
⋃

X)(E) = ∅,
(
⋃

X)(D) = {idD, β} as subpresheaf of yD. Now there cannot be any arrow
in SetC

op
from X to

⋃

X, because, in X(D), the unique element is fixed by
the action of β; however, in (

⋃

X)(D) there is no fixed point for the action
of β. Hence there is no ‘choice function’.

18

2 Sheaves

In this chapter we shall generalize the notion of a ‘sheaf on a topological
space’ to arbitrary categories.

First, let us recall what a sheaf on a topological space is. Let X be
a space with set of opens O(X), considered as a poset with the inclusion
order.

A presheaf F on X is simply a presheaf on O(X). So for two opens
U ⊆ V in X we have F (U ⊆ V) : F (V) → F (U), with the usual conditions.
F is called separated if for any two elements x, y of F (U) and any open cover
U =

⋃

i Ui of U , if F (Ui ⊆ U)(x) = F (Ui ⊆ U)(y) for all i, then x = y.
F is called a sheaf , if for every system of elements xi ∈ F (Ui), indexed

by an open cover U =
⋃

i Ui of U , such that for every pair i, j we have
F (Ui ∩ Uj ⊆ Ui)(xi) = F (Ui ∩ Uj ⊆ Uj)(xj), there is a unique element
x ∈ F (U) such that xi = F (Ui ⊆ U)(x) for each i.

Such a system of elements xi is called a compatible family, and x is called
an amalgamation of it. The most common examples of sheaves on X are
sheaves of partial functions: F (U) is a set of functions U → Y (for example,
continuous functions to a space Y), and F (U ⊆ V)(f) is the restriction of
f to U .
Example. Let X be R with the discrete topology; for U ⊆ R let F (U) be
the set of injective functions from U to N. F is separated, but not a sheaf
(check!).

In generalizing from O(X) to an arbitrary category C, we see that what we
lack is the notion of a ‘cover’. Because C is in general not a preorder, it will
not do to define a ‘cover of an object C’ as a collection of objects (as in the
case of O(X)); rather, a cover of C will be a sieve on C.

We shall denote the maximal sieve on C by max(C).

Definition 2.1 Let C be a category. A Grothendieck topology on C specifies,
for every object C of C, a family Cov(C) of ‘covering sieves’ on C, in such
a way that the following conditions are satisfied:

i) max(C) ∈ Cov(C)

ii) If R ∈ Cov(C) then for every f : C ′ → C, f∗(R) ∈ Cov(C ′)

iii) If R is a sieve on C and S is a covering sieve on C, such that for every
arrow f : C ′ → C from S we have f ∗(R) ∈ Cov(C ′), then R ∈ Cov(C)

We note an immediate consequence of the definition:

19

Proposition 2.2 a) If R ∈ Cov(C), S a sieve on C and R ⊆ S, then
S ∈ Cov(C);

b) If R,S ∈ Cov(C) then R ∩ S ∈ Cov(C)

Proof. For a), just observe that for every f ∈ R, f ∗(S) = max(C ′); apply
i) and iii) of 2.1. For b), note that if f ∈ R then f ∗(S) = f∗(R ∩ S), and
apply ii) and iii).

Definition 2.3 A universal closure operation on SetC
op

assigns to every
presheaf X an operation (̄·) : Sub(X) → Sub(X) such that the following
hold:

i) A ≤ Ā

ii) Ā = ¯̄A

iii) A ≤ B ⇒ Ā ≤ B̄

iv) For φ : Y → X and A ∈ Sub(X), φ](Ā) = φ](A)

Definition 2.4 A Lawvere-Tierney topology on SetC
op

is an arrow J : Ω →
Ω (where, as usual, Ω denotes the subobject classifier of SetC

op
), such that

the following hold:

i) R ⊆ JC(R) for every sieve R on C

ii) JC(R ∩ S) = JC(R) ∩ JC(S)

iii) JC(JC(R)) = JC(R)

Theorem 2.5 The following notions are equivalent (that is, each of them
determines the others uniquely):

1) A Grothendieck topolosy on C

2) A Lawvere-Tierney topology on SetC
op

3) A universal closure operation on SetC
op

4) A full subcategory E of SetC
op

, such that the inclusion E → SetC
op

has
a left adjoint which preserves finite limits

20

Proof. We first prove the equivalence of the first three notions; the equiva-
lence of these with notion 4 requires more work and is relegated to a separate
proof.

1) ⇒ 2). Given a Grothendieck topology Cov on C, define J : Ω → Ω by

JC(R) = {h : C ′ → C |h∗(R) ∈ Cov(C ′)}

If h : C ′ → C is an element of JC(R) and g : C ′′ → C ′ arbitrary, then
(hg)∗(R) = g∗(h∗(R)) ∈ Cov(C ′′) so hg ∈ JC(R). Hence JC(R) is a sieve on
C. Similarly, J is a natural transformation: for f : C ′ → C we have

JC′(f∗(R)) = {h : C ′′ → C ′ |h∗(f∗(R)) ∈ Cov(C ′′)}
= {h : C ′′ → C ′ | (fh)∗(R) ∈ Cov(C ′′)}
= {h : C ′′ → C ′ | fh ∈ JC(R)}
= f∗(JC(R))

To prove R ⊆ JC(R) we just apply condition i) of 2.1, since h∗(R) = max(C ′)
for h ∈ R.

By 2.2 we have R ∩ S ∈ Cov(C) if and only if both R ∈ Cov(C) and
S ∈ Cov(C), and together with the equation h∗(R∩S) = h∗(R)∩h∗(S) this
implies that JC(R ∩ S) = JC(R) ∩ JC(S).

Finally, since J preserves ∩, it preserves ⊆ (A ⊆ B iff A ∩B = A). We
have proved R ⊆ JC(R), so JC(R) ⊆ JC(JC(R)) follows. For the converse,
suppose h ∈ JC(JC(R)) so h∗(JC(R)) ∈ Cov(C ′). We need to prove h∗(R) ∈
Cov(C ′). Now for any g ∈ h∗(JC(R)) we have (hg)∗(R) ∈ Cov(C ′′) so
g∗(h∗(R)) ∈ Cov(C ′′). Hence by condition iii) of 2.1, h∗(R) ∈ Cov(C ′).
This completes the proof that J is a Lawvere-Tierney topology.

2) ⇒ 3). Suppose we are given a Lawvere-Tierney topology J . Define the
operation (̄·) : Sub(X) → Sub(X) as follows: if A ∈ Sub(X) is classified by
φ : X → Ω then Ā is classified by Jφ. So

Ā(C) = {x ∈ X(C) | JC(φC(x)) = max(C)}

Then if f : Y → X is a map of presheaves and A ∈ Sub(X), both subobjects

f](Ā) and f](A) are classified by Jφf : Y → Ω, hence they are equal. This
proves iv) of definition 2.3. i) follows from condition i) of 2.4 and ii) from
iii) of 2.4; finally, that (̄·) is order-preserving follows from the fact that JC

preserves ⊆.

3) ⇒ 1). Given a universal closure operation (·) on SetC
op

, we define
Cov(C) = {R ∈ Ω(C) | R̄ = yC in Sub(yC)}. Under the identification of

21

sieves on C with subobjects of yC , f∗(R) corresponds to (yf)](R). So
from condition iv) in 2.3 it follows that if R ∈ Cov(C) and f : C ′ → C,
f∗(R) ∈ Cov(C ′). Condition i) (max(C) ∈ Cov(C)) follows from i) of 2.3.

To prove iii) of 2.1, suppose R ∈ Ω(C), S ∈ Cov(C) and for every
f : C ′ → C in S we have f ∗(R) ∈ Cov(C ′). So S̄ = yC and for all f ∈ S,
yC′ = f∗(R) = (yf)](R̄) = f∗(R̄). But that means that for all f ∈ S, f ∈ R̄.

So S ⊆ R̄; hence by iii) of 2.3, yC = S̄ = ¯̄R; but ¯̄R = R̄ by ii) of 2.3, so
yC = R̄, so R ∈ Cov(C), as desired.

As said in the beginning of this proof, the equivalence of 4) with the other
notions requires more work. We start with some definitions.

Definition 2.6 Let Cov be a Grothendieck topology on C, and (̄·) the as-
sociated universal closure operation on SetC

op
.

A presheaf F is separated for Cov if for each C ∈ C0 and x, y ∈ F (C), if
the sieve {f : C ′ → C |F (f)(x) = F (f)(y)} covers C, then x = y.

A subpresheaf G of F is closed if Ḡ = G in Sub(F).
A subpresheaf G of F is dense if Ḡ = F in Sub(F).

Exercise 16 i) A subpresheaf G of F is closed if and only if for each
x ∈ F (C): if {f : C ′ → C |F (f)(x) ∈ G(C ′)} covers C, then x ∈ G(C)

ii) F is separated if and only if the diagonal: F → F × F is a closed
subobject (this explains the term ‘separated’: in French, the word
‘séparé’ is synonymous with ‘Hausdorff’)

iii) A subpresheaf G of F is dense if and only if for each x ∈ F (C), the
sieve {f : C ′ → C |F (f)(x) ∈ G(C ′)} is covering

iv) A sieve R on C, considered as subobject of yC , is dense if and only if
it is covering

Definition 2.7 Let F be a presheaf, C an object of C. A compatible family
in F at C is a family (xf | f ∈ R) indexed by a sieve R on C, of elements
xf ∈ F (dom(f)), such that for f : C ′ → C in R and g : C ′′ → C ′ arbitrary,
xfg = F (g)(xf). In other words, a compatible family is an arrow R → F
in SetC

op
. An amalgamation of such a compatible family is an element

x of F (C) such that xf = F (f)(x) for all f ∈ R. In other words, an
amalgamation is an extension of the map R→ F to a map yC → F .

Exercise 17 F is separated if and only if each compatible family in F ,
indexed by a covering sieve, has at most one amalgamation.

22

Definition 2.8 F is a sheaf if every compatible family in F , indexed by a
covering sieve, has exactly one amalgamation.

Exercise 18 Suppose G is a subpresheaf of F . If G is a sheaf, then G is
closed in Sub(F). Conversely, every closed subpresheaf of a sheaf is a sheaf.

Example. Let Y be a presheaf. Define a presheaf Z as follows: Z(C)
consists of all pairs (R,φ) such that R ∈ Cov(C) and φ : R→ Y is an arrow
in SetC

op
. If f : C ′ → C then Z(f)(R,φ) = (f ∗(R), φf ′) where f ′ is such

that

f∗(R)

��

f ′

// R

��
yC′

yf

// yC

is a pullback.
Suppose we have a compatible family in Z, indexed by a covering sieve S

on C. So for each f ∈ S, f : C ′ → C there is Rf ∈ Cov(C ′), φf : Rf → Y ,
such that for g : C ′′ → C ′ we have that Rfg = g∗(Rf) and φfg : Rfg → Y is
φfg

′ where g′ : Rfg → Rf is the pullback of yg : yC′′ → yC′ .
Then this family has an amalgamation in Z: define T ∈ Cov(C) by

T = {fg | f ∈ S, g ∈ Rf}. T is covering since for every f ∈ S we have
Rf ⊆ f∗(T). We can define χ : T → Y by χ(fg) = φf (g). So the presheaf
Z satisfies the ‘existence’ part of the amalgamation condition for a sheaf. It
does not in general satisfy the uniqueness part.

Exercise 19 Prove that F is a sheaf if and only if for every presheaf X and
every dense subpresheaf A of X, any arrow A → F has a unique extension
to an arrow X → F .

The ‘plus’ construction. We define, for every presheaf X on C, a presheaf
X+ as follows. X+(C) is the set of equivalence classes of pairs (R,φ) with
R ∈ Cov(C) and φ : R→ X, where (R,φ) ∼ (S, ψ) holds if and only if there
is a covering sieve T on C, such that T ⊆ R ∩ S and φ and ψ agree on T .
Since Cov(C) is closed under intersections, this is evidently an equivalence
relation.

The construction (·)+ is a functor SetC
op

→ SetC
op

: for f : X → Y
define (f)+ : X+ → Y + by (f)+C(R,φ) = (R, fφ). This is well-defined on
equivalence classes.

We have a natural transformation ζ from the identity on SetC
op

to (·)+:
(ζX)C(x) = (yC , φ) where φ : yC → X corresponds to x in the Yoneda
Lemma (φC(idC) = x).

23

The following lemma is ‘by definition’.

Lemma 2.9 Let X be a presheaf on C.

i) X is separated if and only if ζX is mono.

ii) X is a sheaf if and only if ζX is an isomorphism.

Lemma 2.10 Let X be a presheaf, F a sheaf, g : X → F an arrow in
SetC

op
. Then g factors through ζX : X → X+ via a unique g̃ : X+ → F :

X
g

//

ζX !!C
CC

CC
CC

C F

X+

g̃

==|
|

|
|

Proof. For [(R,φ)] ∈ X+(C), define g̃C([(R,φ)]) to be the unique amalga-
mation in F (C) of the composite gφ : R → F . This is well-defined, for if
(R,φ) ∼ (S, ψ) then for some covering sieve T ⊆ R∩S we have that gφ and
gψ agree on T ; hence they have the same amalgamation. Convince yourself
that g̃ is natural. By inspection, the diagram commutes, and g̃ is the unique
arrow with this property.

Lemma 2.11 For every presheaf X, X+ is separated.

Proof. For, suppose (R,φ) and (S, ψ) are representatives of elements of
X+(C) such that, for some covering sieve T of C it holds that for each
f ∈ T there is a cover Tf ⊆ F ∗(R) ∩ f∗(S) such that φf ′ and ψf ′′ agree on
Tf , where f ′ and f ′′ are as in the pullback diagrams

f∗(R)

��

f ′

// R

��
yC′

f
// yC

f∗(S)

��

f ′′

// S

��
yC′′

f
// yC

Let U = {fg | f ∈ T, g ∈ Tf}. Then U is a covering sieve on C, U ⊆ R ∩ S,
and φ and ψ agree on U . Hence (R,φ) ∼ (S, ψ), so they represent the same
element of X+(C).

Lemma 2.12 If X is separated, X+ is a sheaf.

24

Proof. Suppose we have a compatible family in X+, indexed by a covering
sieve R on C. So for each f : C ′ → C in R we have (Rf , φf), φf : R→ X.

In order to find an amalgamation, we define a sieve S and a map ψ :
S → X by:

S = {fg | f ∈ R, g ∈ Rf}
ψ(fg) = φf (g)

Certainly S is a covering sieve on C, but it is not a priori clear that ψ is
well-defined. For it may be the case that for f, f ′ ∈ R, g ∈ Rf and g′ ∈ Rf ′ ,
fg = f ′g′:

C ′

f

 @
@@

@@
@@

@

C ′′

g
==||||||||

g′ !!B
BB

BB
BB

B C

D
f ′

>>}}}}}}}}

We need to show that in this case, φf (g) = φf ′(g′).
The fact that we have a compatible family means that (g∗(Rf), φfh) ∼

((g′)∗(Rf ′), φf ′h′) in the equivalence relation defining X+(C ′′), where h and
h′ are as in the pullback diagrams

g∗(Rf)

��

h // Rf

��
yC′′

yg

// yC′

(g′)∗(Rf ′)

��

h′

// Rf ′

��
yC′′

yg′

// yD

That means that there is a covering sieve T on C ′′ such that T ⊆ g∗(Rf) ∩
(g′)∗(Rf ′) on which φfh and φf ′h′ coincide; hence, for all k ∈ T we have
that X(k)(φf (g)) = X(k)(φf ′ (g′)). Since X is separated by assumption,
φf (g) = φf ′(g′) as desired.

We have obtained an amalgamation. It is unique because X+ is sepa-
rated by lemma 2.11.

The functor a : SetC
op

→ SetC
op

is defined by applying (·)+ twice: a(X) =
X++. By lemmas 2.11 and 2.12, a(X) is always a sheaf. There is a nat-
ural transformation η from the identity to a obtained by the composition

X
ζ
→ X+ ζ

→ X++ = a(X); by twice applying lemma 2.10 one sees that
every arrow from a presheaf X to a sheaf F factors uniquely through η.

25

This exhibits η as the unit of an adjunction between SetC
op

and its full sub-
category of sheaves. If we denote the latter by Sh(C,Cov) and regard a as a
functor SetC

op
→ Sh(C,Cov), then a is left adjoint to the inclusion functor.

The functor a is usually called sheafification, or the associated sheaf
functor.

Lemma 2.13 The sheafification functor preserves finite limits.

Proof. It is enough to show that (·)+ preserves the terminal object and
pullbacks. That (·)+ preserves 1 is obvious (1 is always a sheaf). Suppose

X

v

��

u // Y

f

��

Z g
// V

is a pullback diagram. In order to show that also its (·)+-image is, suppose
(R,φ) and (S, ψ) represent elements of Y +(C), Z+(C), respectively, such
that (R, fφ) ∼ (S, gψ) in the equivalence relation defining V +(C). Then
there is a covering sieve T ⊆ R ∩ S such that the square

T //

��

Y

f

��

Z g
// V

commutes. By the pullback property, there is a unique factoring map χ :
T → X; that is, an element (T, χ) ofX+(C) such that [(R,φ)] = u+([(T, χ)])
and [(S, ψ)] = v+([(T, χ)]), which shows that the (·)+-image of the given
diagram is a pullback.

We now wrap up to finish the proof of Theorem 2.5: every Grothendieck
topology gives a category of sheaves, which is a full subcategory of SetC

op

such that the inclusion has a left adjoint a which preserves finite limits by
2.13.

Conversely, suppose such a full subcategory E of SetC
op

is given, with
inclusion i : E → SetC

op
and left adjoint r : SetC

op
→ E , r preserving finite

limits. This then determines a universal closure operation as follows. Given
a subpresheaf A of X, define Ā as given by the pullback:

Ā

��

// ir(A)

��

X η
// ir(X)

26

where η : X → ir(X) is the unit of the adjunction r a i. Since r preserves
finite limits, ir preserves monos, so the map Ā → X is monic. Writing
down the naturality square for η for the inclusion A → X we see that this
inclusion factors through Ā→ X, so A ≤ Ā. It is immediate that (̄·) is order-
preserving; and because i is full and faithful so ri is naturally isomorphic
to the identity on E , ir is (up to isomorphism) idempotent, from which it
is easy to deduce that ¯̄A = Ā. The final property of a universal closure
operation, stability under pullback, follows again from the fact that r, and
hence ir, preserves pullbacks.

2.1 Examples of Grothendieck topologies

1. As always, there are the two trivial extremes. The smallest Grothendieck
topology (corresponding to the maximal subcategory of sheaves) has
Cov(C) = {max(C)} for all C. The only dense subpresheaves are the
maximal ones; every presheaf is a sheaf.

2. The other extreme is the biggest Grothendieck topology: Cov(C) =
Ω(C). Every subpresheaf is dense; the only sheaf is the terminal object
1.

3. Let X be a topological space with set of opens O(X), regarded as
a category: a poset under the inclusion order. A sieve on an open
set U can be identified with a downwards closed collection R of open
subsets of U . The standard Grothendieck topology has R ∈ Cov(U)
iff

⋃

R = U . Sheaves for this Grothendieck topology coincide with the
familiar sheaves on the space X.

4. The dense or ¬¬-topology is defined by:

Cov(C) = {R ∈ Ω(C) | ∀f : C ′ → C∃g : C ′′ → C ′ (fg ∈ R)}

This topology corresponds to the Lawvere-Tierney topology J : Ω → Ω
defined by

JC(R) = {h : C ′ → C | ∀f : C ′′ → C ′∃g : C ′′′ → C ′′ (hfg ∈ R)}

This topology has the property that for every sheaf F , the collection
of subsheaves of F forms a Boolean algebra

5. For this example we assume that in the category C, every pair of arrows
with common codomain fits into a commutative square. Then the

27

atomic topology takes all nonempty sieves as covers. This corresponds
to the Lawvere-Tierney topology

JC(R) = {h : C ′ → C | ∃f : C ′′ → C ′ (hf ∈ R)}

This topology has the property that for every sheaf F , the collection
of subsheaves of F forms an atomic Boolean algebra: an atom in a
Boolean algebra is a minimal non-bottom element. An atomic Boolean
algebra is such that for every non-bottom x, there is an atom which
is ≤ x.

6. Let U be a subpresheaf of the terminal presheaf 1. With U we can
associate a set of objects Ũ of C such that whenever f : C ′ → C is
an arrow and C ∈ Ũ , then C ′ ∈ Ũ . Namely, Ũ = {C |U(C) 6= ∅}.
To such U corresponds a Grothendieck topology, the open topology
determined by U , given by

Cov(C) = {R ∈ Ω(C) | ∀f : C ′ → C (C ′ ∈ Ũ ⇒ f ∈ R)}

and associated Lawvere-Tierney topology

JC(R) = {h : C ′ → C | ∀f : C ′′ → C ′ (C ′′ ∈ Ũ ⇒ hf ∈ R)}

Let D be the full subcategory of C on the objects in Ũ . Then there is
an equivalence of categories between Sh(C,Cov) and SetD

op
.

7. For U and Ũ as in the previous example, there is also the closed topol-
ogy determined by U , given by

Cov(C) = {R ∈ Ω(C) |C ∈ Ũ or R = max(C)}

There is an equivalence between Sh(C,Cov) and the category of presheaves
on the full subcategory of C on the objects not in Ũ .

2.2 Structure of the category of sheaves

In this section we shall see, among other things, that also the category
Sh(C,Cov) is a topos.

Proposition 2.14 Sh(C,Cov) is closed under arbitrary limits in SetC
op

.

Proof. This is rather immediate from the defining property of sheaves and
the way (point-wise) limits are calculated in SetC

op
. Suppose F : I → SetC

op

28

is a diagram of sheaves with limiting cone (X, (µi : X → F (i))) in SetC
op

.
We show that X is a sheaf.

Suppose R ∈ Cov(C) and φ : R → X is a map in SetC
op

. Since every
F (i) is a sheaf, every composite µiφ : R→ F (i) has a unique amalgamation
yi ∈ F (i)(C), and by uniqueness these satisfy, for every map k : i→ j in the
index category I, the equality (F (k))C (yi) = yj. Since X(C) is the vertex
of a limiting cone for the diagram F (·)(C) : I → Set, there is a unique
x ∈ X(C) such that (µi)C(x) = yi for each i. But this means that x is an

amalgamation (and the unique such) for R
φ
→ X.

Proposition 2.15 Let X be a presheaf, Y a sheaf. Then Y X is a sheaf.

Proof. Suppose A → Z is a dense subobject, and A
φ
→ Y X a map. By

exercise 19 we have to see that φ has a unique extension to a map Z → Y X .
Now φ transposes to a map φ̃ : A × X → Y . By stability of the closure
operation, if A → Z is dense then so is A × X → Z × X. Since Y is a
sheaf, φ̃ has a unique extension to ψ : Z ×X → Y . Transposing back gives
ψ̄ : Z → Y X , which is the required extension of φ.

Corollary 2.16 The category Sh(C,Cov) is cartesian closed.

Now we turn to the subobject classifier in Sh(C,Cov). Let J : Ω → Ω be the
associated Lawvere-Tierney topology. Sieves on C which are in the image
of JC are called closed. This is good terminology, since a closed sieve on C
is the same thing as a closed subpresheaf of yC .

By exercise 18 we know that subsheaves of a sheaf are the closed sub-
presheaves, and from exercise 16i) we know that a subpresheaf is closed if
and only if its classifying map takes values in the image of J . This is a
subobject of Ω; let us call it ΩJ . So subobjects in Sh(C,Cov) admit unique

classifying maps into ΩJ ; note that the map 1
t
→ Ω, which picks out the

maximal sieve on any C, factors through ΩJ since every maximal sieve is

closed. So 1
t
→ ΩJ is a subobject classifier in Sh(C,Cov) provided we can

show that it is a map between sheaves. It is easy to see (and a special case
of 2.14) that 1 is a sheaf. For ΩJ this requires a little argument.

Proposition 2.17 The presheaf ΩJ is a sheaf.

Proof. We have seen that the arrow 1
t
→ ΩJ classifies closed subobjects.

Therefore, in order to show that ΩJ has the unique-extension property w.r.t.
dense inclusions, it is enough to see that whenever X is a dense subpresheaf
of Y there is a bijection between the closed subpresheaves of X and the
closed subpresheaves of Y .

29

For a closed subpresheaf A of X let k(A) be the closure of A in Sub(Y).
For a closed subpresheafB of Y let l(B) = B∩X; this is a closed subpresheaf
of X.

Now kl(B) = k(B ∩ X) = B ∩X = B̄ ∩ X̄ = B̄ = B since X is dense
and B closed. Conversely, lk(A) = Ā ∩X which is (by stability of closure)
the closure of A in X. But A was closed, so this is A. Hence the maps k
and l are inverse to each other, which finishes the proof.

Corollary 2.18 The category Sh(C,Cov) is a topos.

Definition 2.19 A pair (C,Cov) of a small category and a Grothendieck
topology on it is called a site. For a sheaf on C for Cov, we also say that it is
a sheaf on the site (C,Cov). A Grothendieck topos is a category of sheaves
on a site.

Not every topos is a Grothendieck topos. For the moment, there is only one
simple example to give of a topos that is not Grothendieck: the category of
finite sets. It is not a Grothendieck topos, for example because it does not
have all small limits.

Exercise 20 The terminal category 1 is a topos. Is it a Grothendieck
topos?

Let us say something about power objects and the natural numbers in
Sh(C,Cov).

For power objects there is not much more to say than this: for a sheaf
X, its power object in Sh(C,Cov) is ΩX

J ; we shall also write PJ(X). By the
Yoneda Lemma we have a natural 1-1 correspondence between PJ(X)(C)
and the set of closed subpresheaves of yC × X; for f : C ′ → C and A a
closed subpresheaf of yC ×X, PJ(X)(f)(A) is given by (yf × idX)](A).

Next, let us discuss natural numbers. We use exercise 11 which says that
the constant presheaf with value N is a natural numbers object in SetC

op
,

and we also use the following result:

Exercise 21 Suppose E has a natural numbers object and F : E → F is a
functor which has a right adjoint and preserves the terminal object. Then
F preserves the natural numbers object.

So the natural numbers object in Sh(C,Cov) is N++, whereN is the constant
presheaf with value N. In fact, we don’t have to apply the ‘plus’ construction
twice, because N is ‘almost’ separated: clearly, if n,m are two distinct
natural numbers and R ∈ Cov(C) is such that for all f ∈ R we have nf =

30

mf , then R = ∅. So the only way that N can fail to be separated is that for
some objects C we have ∅ ∈ Cov(C). Now define the presheaf N ′ as follows:

N ′(C) =

{

N if ∅ 6∈ Cov(C)
{∗} if ∅ ∈ Cov(C)

Exercise 22 Prove:

a) N ′ is separated

b) ζN : N → N+ factors through N ′

c) N++ ' (N ′)+

Colimits in Sh(C,Cov) are calculated as follows: take the colimit in SetC
op

,
then apply the associated sheaf functor. For coproducts of sheaves, we have
a simplification comparable to that of N . We write

⊔

for the coproduct in
SetC

op
and

⊔

J for the coproduct in Sh(C,Cov). So
⊔

J Fi = a(
⊔

Fi), but if
we define

⊔′ Fi by

(
⊔

′Fi)(C) =

{ ⊔

Fi(C) if ∅ 6∈ Cov(C)
{∗} if ∅ ∈ Cov(C)

then it is not too hard to show that
⊔

J Fi ' (
⊔′ Fi)

+. Concretely, a com-
patible family in

⊔′ Fi indexed by a covering sieve R on C, i.e./ a map
φ : R →

⊔′ Fi, gives for each i a sub-sieve Ri and a map φi : Ri → Fi. The
system of subsieves Ri has the property that if h : C ′ → C is an element of
Ri ∩ Rj and i 6= j, then ∅ ∈ Cov(C ′). Of course, such compatible families
are still subject to the equivalence relation defining (

⊔′ Fi)
+.

Exercise 23 Prove:

i) Coproducts are stable in Sh(C,Cov)

ii) For any sheaf F , FNJ '
∏

n∈N F

Images in Sh(C,Cov): given a map φ : F → G between sheaves, the image
of φ (as subsheaf of G) is the closure of the image in SetC

op
of the same map.

The arrow φ is an epimorphism in Sh(C,Cov) if and only if for each C and
each x ∈ G(C), the sieve {f : C ′ → C | ∃y ∈ F (C ′)(φC′(y) = xf)} covers C.

Exercise 24 Prove this characterization of epis in Sh(C,Cov). Prove also
that in Sh(C,Cov), an arrow which is both mono and epi is an isomorphism.

31

Regarding the structure of the lattice of subobjects in Sh(C,Cov) of a sheaf
F , we know that these are the closed subpresheaves, so the fixed points of
the closure operation. That the subobjects again form a Heyting algebra is
then a consequence of the following exercise.

Exercise 25 Suppose H is a Heyting algebra with operations ⊥,>,∧,∨,→
and let j : H → H be order-preserving, idempotent, inflationary (that is:
x ≤ j(x) for all x ∈ H), and such that j(x∧ y) = j(x)∧ j(y). Let Hj be the
set of fixed points of j. Then Hj is a Heyting algebra with operations:

>j = > ⊥j = j(⊥)
x ∧j y = x ∧ y x ∨j y = j(x ∨ y)

x→j y = x→ y

Exercise 26 If H is a Heyting algebra, show that the map ¬¬ : x 7→ (x→
⊥) → ⊥ satisfies the requirements of the map j in exercise 25. Show also
that H¬¬ is a Boolean algebra.

Exercise 27 Let J be the Lawvere-Tierney topology corresponding to the
dense topology (see section 2.1). Show that in the Heyting algebra Ω(C),
JC is the map ¬¬ of exercise 26.

As for presheaves, we can express the interpretation of first-order languages
in Sh(C,Cov) in terms of a ‘forcing’ definition. The basic setup is the same;
only now, of course, we take sheaves as interpretation of the sorts, and
closed subpresheaves (subsheaves) as interpretation of the relation symbols.
We then define [[ϕ]] as a subsheaf of [[FV (ϕ)]] and let {ϕ} : [[FV (ϕ)]] → ΩJ

be its classifying map. The notation C J ϕ(a1, . . . , an) again means that
{ϕ}C (a1, . . . , an) is the maximal sieve on C. This relation then again admits
a definition by recursion on the formula ϕ. The inductive clauses of the
definition of J are the same for for the cases: atomic formula, ∧, → and
∀, and we put:

• C J (ϕ ∨ ψ)(a1, . . . , an) if and only if the sieve {g : C ′ → C |C ′ J

ϕ(a1g, . . . , ang) or C ′ J ψ(a1g, . . . , ang)} covers C;

• C J ∃xϕ(x, a1, . . . , an) if and only if the sieve {g : C ′ → C | ∃x ∈
F (C ′)C ′ J ϕ(x, a1g, . . . , ang)} covers C (where F is the interpreta-
tion of the sort of x).

That this works should be no surprise in view of our characterisation
of images in Sh(C,Cov) and our treatment of the Heyting structure on the
subsheaves of a sheaf. We have the following properties of the relation J :

32

Theorem 2.20 i) If C J ϕ(a1, . . . , an) then for each arrow f : C ′ →
C, C ′ J ϕ(a1f, . . . , anf);

ii) if R is a covering sieve on C and for every arrow f : C ′ → C in R we
have C ′ J ϕ(a1f, . . . , anf), then C J ϕ(a1, . . . , an).

Exercise 28 Let NJ be the natural numbers object in Sh(C,Cov). Prove
the same result as we had in exercise 11, that is: for the standard interpre-
tation of te language of arithmetic in NJ , a sentence is true if and only it is
true in the (classical) standard model of natural numbers.

2.3 Application: a model for the independence of the Axiom

of Choice

In this section we treat a model, due to P. Freyd, which shows that in toposes
where classical logic always holds, the axiom of choice need not be valid.
Specifically, we construct a topos F = Sh(F,Cov) and in F a subobject E
of NJ ×PJ(NJ) with the properties:

i) F is Boolean, that is: every subobject lattice is a Boolean algebra;

ii) J ∀n∃α((n, α) ∈ E)

iii) ¬∃f ∈ PJ(NJ)NJ∀n ((n, f(n)) ∈ E)

So, E is an NJ -indexed collection of nonempty (in a strong sense) subsets
of PJ(NJ), but admits no choice function.

Let F be the following category: it has objects n̄ for each natural number
n, and an arrow f : m̄→ n̄ is a function {0, . . . ,m} → {0, . . . , n} such that
f(i) = i for every i with 0 ≤ i ≤ n. It is understood that there are no
morphisms m̄ → n̄ for m < n. Note, that 0̄ is a terminal object in this
category.

On F we let Cov be the dense topology, so a sieve R on m̄ covers m̄ if
and only if for every arrow g : n̄→ m̄ there is an arrow h : k̄ → n̄ such that
gh ∈ R. We shall work in the topos F = Sh(F,Cov), the Freyd topos. Let
En be the object a(yn̄), the sheafification of the representable presheaf on
n̄.

Lemma 2.21 Cov has the following properties:

a) Every covering sieve is nonempty

b) Every nonempty sieve on 0̄ is a cover

33

c) Every representable presheaf is separated

d) y0̄ has only two closed subobjects

Proof. For a), apply the definition of ‘R covers m̄’ to the identity on m̄; it
follows that there is an arrow h : k̄ → m̄ such that h ∈ R.

For b), suppose S is a sieve on 0̄ and k̄
f
→ 0̄ is in S. Since 0̄ is terminal,

for any m̄
g
→ 0̄ and any maps m+ k → k̄, m+ k → m̄, the square

m+ k

��

// k̄

f

��

m̄ g
// 0̄

commutes, so for any such g there is an h with gh ∈ R, hence R covers 0̄.
For c), suppose g, g′ : k̄ → n̄ are such that for a cover R of k̄ we have

gf = g′f for all f ∈ R. We need to see that g = g′. Pick i ≤ k. Let h :
k + 1 → k̄ be such that h(k+1) = i. Since R covers k̄ there is u : l̄ → k + 1
such that hu ∈ R. Then ghu = g′hu, which means that g(i) = ghu(k+1) =
g′hu(k + 1) = g′(i). So g = g′, as desired.

Finally, d) follows directly from b): suppose R is a closed sieve on 0̄. If
R 6= ∅, then R is covering by b), hence (being also closed) equal to max(0̄).
Hence the only closed sieves are ∅ and max(0̄).

Proposition 2.22 The unique map En → 1 is an epimorphism.

Proof. By lemma 2.21d), 1 = a(y0̄) has only two subobjects and yn̄ is
nonempty, so the image of En → 1 is 1.

Proposition 2.23 If n > m then En(m̄) = ∅.

Proof. Since yn̄ is separated by 2.21c), En = (yn̄)+, so En(m̄) is an equiva-
lence class of morphisms τ : S → yn̄ in SetFop

, for a cover S of m̄. We claim
that such τ don’t exist.

For, since such S is nonempty (2.21a)), pick s : k̄ → m̄ in S and let
f = τk̄(s), so f : k̄ → n̄. Let g, h : k + 1 → k̄ be such that g(k+1) = n, and
h(k + 1) = s(n) ≤ m < n. Then sg = sh (check!). So

fg = τk̄(s)g = τk+1(sg) = τk+1(sh) = τk̄(s)h = fh

However, fg(k + 1) = f(n) = n, whereas fh(k + 1) = f(s(n + 1)) = s(n).
Contradiction.

34

Corollary 2.24 The product sheaf
∏

n∈NEn is empty.

Proof. For, if (
∏

nEn)(m̄) 6= ∅ then by applying the projection
∏

nEn →
Em+1 we would have Em+1(m̄) 6= ∅, contradicting 2.23.

Proposition 2.25 For each n there is a monomorphism En → PJ(NJ).

Proof. Since En = a(yn̄) and PJ(NJ) is a sheaf, it is enough to construct
a monomorphism yn̄ → PJ(NJ), which gives then a unique extension to a
map from En; since a preserves monos, the extension will be mono if the
given map is.

Fix n for the rest of the proof. Let (gk)k∈N be a 1-1 enumeration of all
the arrows in F with codomain n̄. For each gi, let Ci be the smallest closed
sieve on n̄ containing gi (i.e., Ci is the Jn̄-image of the sieve generated by
gi).

PJ (NJ)(m̄) is the set of closed subpresheaves of ym̄ ×NJ . Elements of
(ym̄ × NJ)(k̄) are pairs (h, (Si)i∈N) where h : k̄ → m̄ and (Si)i is an N-
indexed collection of sieves on k̄, such that Si ∩ Sj = ∅ for i 6= j, and

⋃

i Si

covers k̄.
Define µm̄ : yn̄(m̄) → PJ(NJ)(m̄) as follows. For f : m̄ → n̄, µm̄(f)

is the subpresheaf of ym̄ × NJ given by: (h, (Si)i) ∈ µm̄(f)(k̄) iff for each
i, Si ⊆ (fh)∗(Ci). It is easily seen that µm̄(f) is a closed subpresheaf of
ym̄ ×NJ .

Let us first see that µ is a natural transformation. Suppose g : l̄ → m̄.
For h′ : k̄ → l̄ we have:

(h′, (Si)i) ∈ (yg × idNJ
)](µm̄(f))(k̄)

iff (gh′, (Si)i) ∈ µm̄(f)(k̄)
iff ∀i(Si ⊆ (fgh′)∗(Ci))
iff (h′, (Si)i) ∈ µl̄(fg)(k̄)

Next, let us prove that µ is mono. Suppose µm̄(f) = µm̄(f ′) for f, f ′ :
m̄→ n̄. Let j and j ′ be such that in our enumeration, f = gj and f ′ = gj′ .
Now consider the pair ξ = (idm̄, (Si)i), where Si is the empty sieve if i 6= j,
and Sj = max(m̄). Then ξ is easily seen to be an element of µm̄(f)(m̄), so
it must also be an element of µm̄(f ′)(m̄), which means that f ′ ∈ Cj . So
Cj ∩ Cj′ 6= ∅. But this means that we must have a commutative square in
F:

l̄

��

// m̄

f ′

��

m̄
f

// n̄

It is easy to conclude from this that f = f ′.

35

2.4 Application: a model for “every function from reals to

reals is continuous”

In 1924, L.E.J. Brouwer published a paper: Beweis, dass jede volle Funktion

gleichmässig stetig ist (Proof, that every total function is uniformly contin-
uous), Nederl. Akad. Wetensch. Proc. 27, pp.189–193. His lucubrations on
intuitionistic mathematics had led him to the conclusion that every func-
tion from R to R must be continuous. Among present-day researchers of
constructive mathematics, this statement is known as Brouwer’s Principle

(although die-hard intuitionists still refer to it as Brouwer’s Theorem).
The principle can be made plausible in a number of ways; one is, to look

at the reals from a computational point of view. If a computer, which can
only deal with finite approximations of reals, computes a function, then for
every required precision for f(x) it must be able to approximate x closely
enough and from there calculate f(x) within the prescribed precision; this
just means that f must be continuous.

In this section we shall show that the principle is consistent with higher-
order intuitionistic type theory, by exhibiting a topos in which it holds, for
the standard real numbers. In order to do this, we have of course to say
what the “object of real numbers” in a topos is. That will be done in the
course of the construction.

We shall work with a full subcategory T of the category Top of topological
spaces and continuous functions. It doesn’t really matter so much what T

exactly is, but we require that:

• T is closed under finite products and open subspaces

• T contains the space R (with the euclidean topology)

We specify a Grothendieck topology on T by defining, for an object T of T,
that a sieve R on T covers T , if the set of open subsets U of T for which the
inclusion U → T is in R, forms an open covering of T . It is easy to verify
that this is a Grothendieck topology.

The first thing to note is that for this topology (we call it Cov), every
representable presheaf is a sheaf, because it is a presheaf of (continuous)
functions: given a compatible family R → yT for R a covering sieve on
X, this family contains maps fU : U → T for every open U contained in
a covering of X; and these maps agree on intersections, because we have a
sieve. So they have a unique amalgamation to a continuous map f : X → T ,
i.e. an element of yT (X).

Also for spaces S not necessarily in the category T we have sheaves
yS = Cts(−, S).

36

Recall that the Yoneda embedding preserves existing exponents in T.
This also extends to exponents which exist in Top but are not in T. If
T is a locally compact space, then for any space X we have an exponent
XT in Top: it is the set of continuous functions T → X, equipped with
the compact-open topology (a subbase for this topology is given by the sets
C(C,U) of those continuous functions that map C into U , for a compact
subset C of T and an open subset U of X). Thus, even if X is not an object
of T, we still have in Sh(T,Cov):

yXT ' (yX)(YT)

Exercise 29 Prove this fact.

From now on, we shall denote the category Sh(T,Cov) by T .
Notation: in this section we shall dispense with all subscripts (·)J , since
we shall only work in T . So, N denotes the sheaf of natural numbers, P(X)
is the power sheaf of X, refers to forcing in sheaves, etc.

The natural numbers are given by the constant sheaf N , the N-fold coprod-
uct of copies of 1. The rational numbers are formed as a quotient of N ×N
by an equivalence relation which can be defined in a quantifier-free way, and
hence is also a constant sheaf; therefore the object of rational numbers Q
is the constant sheaf on the classical rational numbers Q, and therefore the
Q-fold coproduct of copies of 1.

Proposition 2.26 In T , N and Q are isomorphic to the representable
sheaves yN, yQ respectively, where N and Q are endowed with the discrete
topology.

Proof. We shall do this for N ; the proof for Q is similar. An element of
yN(X) is a continuous function from X to the discrete space N; this is the
same thing as an open covering {Un |n ∈ N} of pairwise disjoint sets; which
in turn is the same thing as an (equivalence class of an) N-indexed collection
{Rn |n ∈ N} of sieves on X such that whenever for n 6= m, f : Y → X is
in Rn ∩Rm, Y = ∅; and moreover the sieve

⋃

nRn covers X. But that last
thing is just an element of (

⊔

n 1)(X).

Under this isomorphism, the order on N and Q corresponds to the pointwise
ordering on functions.

Exercise 30 Show that in T , the objects N and Q are linearly ordered,
that is: for every space X in T, X ∀rs ∈ Q (r < s ∨ r = r ∨ s < r).

37

We now construct the object of Dedekind reals Rd. Just as in the classical
definition, a real number is a Dedekind cut of rational numbers, that is: a
pair (L,R) of subsets of Q satisfying:

i) ∀q ∈ Q¬(q ∈ L ∧ q ∈ R)

ii) ∃q(q ∈ L) ∧ ∃r(r ∈ R)

iii) ∀qr(q < r ∧ r ∈ L→ q ∈ L) ∧ ∀st(s < t ∧ s ∈ R→ t ∈ R)

iv) ∀q ∈ L∃r(q < r ∧ r ∈ L) ∧ ∀s ∈ R∃t(t < s ∧ t ∈ R)

v) ∀qr(q < r → q ∈ L ∨ r ∈ R)

Write Cut(L,R) for the conjunction of these formulas. So the object of reals
Rd is the subsheaf of P(Q) ×P(Q) given by:

Rd(X) = {(L,R) ∈ (P(Q) ×P(Q))(X) |X Cut(L,R)}

This is always a sheaf, by theorem 2.20ii).

Proposition 2.27 The sheaf Rd is isomorphic to the representable sheaf
yR.

Proof. Let W be an object of T and (L,R) ∈ Rd(W). Then L and R
are subsheaves of yW ×Q, which is isomorphic to yW×Q. So both L and R
consist of pairs of maps (α, p) with α : Y → W , p : Y → Q continuous. Since
L and R are subsheaves we have: if (α, p) ∈ L(Y) then for any f : V → Y ,
(αf, pf) ∈ L(V), and if (α � Vi, p � Vi) ∈ L(Vi) for an open cover {Vi}i of Y ,
then (α, p) ∈ L(Y) (and similar for R, of course).

Now for such (L,R) ∈ P(Q)(W)×P(Q)(W) we have (L,R) ∈ Rd(W) if
and only if W Cut(L,R). We are now going to spell out what this means,
and see that such (L,R) uniquely determine a continuous function W → R.

i)′ For β : W ′ → W and q : W ′ → Q, not both (β, q) ∈ L(W ′) and
(β, q) ∈ R(W ′)

ii)′ There is an open covering {Wi} of W such that for each i there are

Wi
li→ Q and Wi

ri→ Q with (Wi → W,Wi
li→ Q) ∈ L(Wi), and

(Wi →W,Wi
ri→ Q) ∈ R(Wi)

iii)′ For any map β : W ′ → W and any q, r : W ′ → Q: if (β, r) ∈ L(W)
and q(x) < r(x) for all x ∈W ′, then (β, q) ∈ L(W ′), and similar for R

38

iv)′ For any β : W ′ → W ad q : W ′ → Q: if (β, q) ∈ L(W ′) there is
an open covering {W ′

i} of W ′, and maps ri : W ′
i → Q such that

(β � W ′
i , ri) ∈ L(W ′

i), and ri(x) > q(x) for all x ∈W ′
i . And similar for

R

v)′ For any β : W ′ → W and q, r : W ′ → Q satisfying q(x) < r(x) for all
x ∈ W ′, there is an open covering {W ′

i} of W ′ such that for each i,
either (β � W ′

i , q � W ′
i) ∈ L(W ′

i) or (β � W ′
i , q � W ′

i) ∈ R(W ′
i).

Let q̂ : W → Q be the constant function with value q. For every x ∈W we
define:

Lx = {q ∈ Q | ∃open V ⊆W (x ∈ V ∧ (V →W, q̂ � V) ∈ L(V))}
Rx = {q ∈ Q | ∃open V ⊆W (x ∈ V ∧ (V →W, q̂ � V) ∈ R(V))}

Then you should verify that (Lx, Rx) form a Dedekind cut in Set, hence
determine a real number fL,R(x).

By definition of Lx andRx, if q, r are rational numbers then q < fL,R(x) <
r holds if and only if q ∈ Lx and r ∈ Rx; so the preimage of the open inter-
val (q, r) under fL,R is open; that is, fL,R is continuous. We have therefore
defined a map (L,R) 7→ fL,R : Rd(W) → yR(W). It is easy to verify that
this gives a map of sheaves: Rd → yR.

For the other direction, if f : W → R is continuous, one defines sub-
sheaves Lf , Rf of yW×Q as follows: for β : W ′ → W,p : W ′ → Q put

(β, p) ∈ Lf (W ′) iff ∀x ∈W ′(p(x) < f(β(x)))
(β, p) ∈ Rf (W ′) iff ∀x ∈W ′(p(x) > f(β(x)))

We leave it to you to verify that then W Cut(Lf , Rf) and that the two
given operations between yR(W) and Rd(W) are inverse to each other. You
should observe that every continuous function f : W → Q is locally constant,
as Q is discrete.

Corollary 2.28 The exonential RRd

d is isomorphic to yRR, where RR is the
set of continuous maps R → R with the compact-open topology.

Proof. This follows at once from proposition 2.27, the observation that y
preserves exponents, and the fact that R is locally compact.

From the corollary we see at once that arrows Rd → Rd in T correspond
bijectively to continuous functions R → R, but this is not yet quite Brouwer’s
statement that all functions (defined, possibly, with extra parameters) from
Rd to Rd are continuous. So we prove that now.

39

Theorem 2.29 T “All functions Rd → Rd are continuous”

Proof. . In other words, we have to prove that the sentence

∀f ∈ RRd

d ∀x ∈ Rd∀ε ∈ Rd(ε > 0 → ∃δ ∈ Rd(δ > 0 ∧
∀y ∈ Rd(x− δ < y < x+ δ → f(x) − ε < f(y) < f(x) + ε)))

is true in T .
We can work in yRR for RRd

d , so RRd

d (W) = Cts(W × R,R). Take f ∈

RRd

d (W) and a, ε ∈ Rd(W) such that W ε > 0. So f : W × R → R, and
a, ε : W → R, ε(x) > 0 for all x ∈W . We have to show:

(∗) W ∃δ ∈ Rd(δ > 0 ∧ ∀y ∈ Rd(a− y < δ < a+ δ →
f(a) − ε < f(y) < f(a) + ε))

Now f and ε are continuous, so for each x ∈W there is an open neighborhood
Wx ⊆ W of x, and a δx > 0 such that for each ξ ∈ Wx and t ∈ (a(x) −
δx, a(x) + δx):

(1) |a(ξ) − a(x)| < 1
2δx

(2) |f(ξ, t) − f(ξ, a(x))| < 1
2ε(ξ)

We claim:

Wx ∀y(a−
1

2
δx < y < a+

1

2
δx → f(a) − ε < f(y) < f(a) + ε)

Note that this establishes what we want to prove.
To prove the claim, choose β : V →Wx, b : V → R such that

V aβ −
1

2
δx < b < aβ +

1

2
δx

Then for all ζ ∈ V , |aβ(ζ) − b(ζ)| < 1
2δx, so by (1),

|a(x) − b(ζ)| < δx

Therefore we can substitute βζ for ξ, and b(ζ) for t in (2) to obtain

|f(β(ζ), b(ζ)) − f(x, a(x))| < 1
2εβ(ζ)

and
|f(β(ζ), aβ(ζ)) − f(x, a(x))| < 1

2εβ(ζ)

We conclude that |f(β(ζ)), b(ζ)) − f(β(ζ), aβ(ζ))| < εβ(ζ). Hence,

V (fβ)(aβ) − εβ < (fβ)(b) < (fβ)(aβ) + εβ

which proves the claim and we are done.

40

3 The Effective Topos

In this chapter we shall meet an example of a topos which is not Grothendieck.
The construction of this topos was given by J.M.E. Hyland in 1982 (Hyland,
The effective topos, in: Troelstra and Van Dalen (eds.), The L.E.J. Brouwer
Centenary Symposium, North Holland 1982, pp.165–216).

In constructive mathematics, several types of models for various theo-
ries had been given with recursion-theoretic methods. The pioneer of this
approach had been S.C. Kleene, who had given an interpretation of first-
order intuitionistic arithmetic based on recursive functions (S.C. Kleene, On

the Interpretation of Intuitionistic Number Theory, JSL 10 (1945), pp.109–
124), which interpretation became known as “realizability”. We shall see
that there is a close connection between Hyland’s topos and Kleene’s work.

Let us define this topos, which we call Eff , straight away. An object of
Eff is a pair (X,R) where X is a set and R : X ×X → P(N) is a function
(we think of elements of R(x, y) as numbers coding information to the effect
that “x = y”). The function R has to satisfy the condition that there
exist partial recursive functions σ and τ (for “symmetry” and “transitivity”
respectively), such that the following hold:

• For x, y ∈ X and n ∈ R(x, y), σ(n)↓ and σ(n) ∈ R(y, x);

• For x, y, z ∈ X, n ∈ R(x, y) and m ∈ R(y, z), τ(n,m)↓ and τ(n,m) ∈
R(x, z).

Notation. We shall use a primitive recursive coding of pairs 〈·, ·〉 and
sequences; context will make clear when we regard a number n as a code of
a pair, in which case we write n1, n2 for its components, so: n = 〈n1, n2〉.
Partial recursive function application may be written as ϕe(x), {e}(x) (the
old, clumsy, Kleene notation), e(x) or simply ex.

In the conditions on R for an object (X,R), we have not required “re-
flexivity”. Elements of R(x, x) (we shall also write E(x) for this set) are
thought of as witnesses for the “existence” of x.

Suppose (X,R) and Y, S) are objects of Eff . A “functional relation”
from (X,R) to (Y, S) is a function F : X ×Y → P(N), such that there exist
partial recursive functions ex, st, sv, tl with the following properties:

• For n ∈ R(x′, x), m ∈ S(y, y′) and k ∈ F (x, y), ex(n,m, k)↓ and
ex(n,m, k) ∈ F (x′, y′) (The function ex testifies that F is “exten-
sional”, i.e. respects the equality relations);

41

• For n ∈ F (x, y), st(n)1 ∈ E(x) and st(n)2 ∈ E(y) (If F relates x to y,
then both these elements exist; F is “strict”);

• For n ∈ F (x, y) and m ∈ F (x, y′), sv(n,m)↓ and sv(n,m) ∈ S(y, y′)
(“F is single-valued”);

• For n ∈ E(x), tl(n)↓ and tl(n) ∈
⋃

y∈Y F (x, y) (“F is total”).

Functional relations from (X,R) to (Y, S) form a preorder: F ≤ G if for
some partial recursive function e, whenever n ∈ F (x, y) then e(n) ∈ G(x, y)
(for all x, y).

A morphism (X,R) → (Y, S) in Eff is now an equivalence class of
functional relations from (X,R) to (Y, S), under the equivalence relation
F ≤ G ∧G ≤ F .

Exercise 31 Show that for functional relations F and G in fact, one in-
equality F ≤ G implies the other.

We should define how such morphisms can be composed, and what identity
morphisms are.

We define: if F represents a morphism f : (X,R) → (Y, S) and G
represents a morphism g : (Y, S) → (Z, T), then the composition gf is the
arrow represented by

G ◦ F (x, z) =
⋃

y∈Y

{〈a, b〉 | a ∈ F (x, y) ∧ b ∈ G(y, z)}

Exercise 32 Show that this is well-defined. That is: show that G ◦ F is
indeed a functional relation if F and G are; and moreover show that the
equivalence class of G ◦ F does not depend on the choice of representatives
F and G.

For every object (X,R), R itself is a functional relation from (X,R) to itself.

Exercise 33 Show that the composition as just defined, is associative.
Show also, that for each (X,R), the arrow represnted by R is an identity on
(X,R).

It is very important to do these two exercises, in order to obtain some
understanding of the category Eff .

42

3.1 Some subcategories and functors

The “constant objects” functor ∇ : Set → Eff is defined as follows: ∇(X) =

(X,R) with R(x, x′) =

{

N if x = x′

∅ else
. For a function f : X → Y , the ar-

row ∇(f) is represented by the functional relation ∇(f)(x, y) =

{

N if f(x) = y
∅ else

.

Exercise 34 Check that ∇ is a well-defined functor. Also show the follow-
ing important fact: ∇ is full and faithful.

The category P (P for “projective”; this will be explained later) has as
objects pairs (X,α) where X is a set and α : X → N is a function. A
morphism (X,α) → (Y, β) is a function f : X → Y such that there exists
some partial recursive function e such that for every x ∈ X, e(α(x))↓ and
e(α(x)) = β(f(x)). Obviously, P is a category.

There is a functor π : P → Eff given on objects by π(X,α) = (X,R)
where R(x, y) = {α(x) |x = y}.

Exercise 35 Describe yourself the action of π on arrows. Show that π is
full and faithful.

A third category we consider is the category S (for “separated”). Objects are
pairs (X,E) where E(x) is a nonempty subset of N. A morphism (X,E) →
(Y,E′) is a function f : X → Y such that there is a partial recursive function
e with the property that for any x ∈ X and any n ∈ E(x), e(n)↓ and
e(n) ∈ E′(f(x)). The partial function e is said to “track” the function f .
Objects of S are also often called “assemblies”.

There is also a full and faithful functor from S to Eff which sends (X,E)
to the object (X,R) where R(x, x′) = {n |n ∈ E(x) and x = x′}.

Exercise 36 Do the same as in the previous exercise, for the functor S →
Eff .

Clearly, the category P can be seen as a subcategory of S: send (X,α) to
(X,Eα) where Eα(x) = {α(x)}. Objects from P are called “partitioned
assemblies”.

We also have an embedding from Set into P which sends a set X to the
P-object (X, 0X) where 0X is the function on X which is constant zero.

Exercise 37 Show that the following diagram of functors

Set

∇ !!D
DD

DD
DD

D
// P

π

��

// S

~~}}
}}

}}
}}

Eff

43

commutes up to isomorphism.

For any locally small category E with terminal object 1 there is the global
sections functor, usually denoted Γ from E to Set given by Γ(X) = E(1, X).

Exercise 38 a) Let {∗} be a one-element set, and R(∗, ∗) = N. Show
that ({∗}, R) is a terminal object 1 in Eff .

b) Prove that on Eff , Γ can be described like this: Γ(X,R) = X+/ ∼,
where X+ = {x ∈ X |E(x) 6= ∅}, and x ∼ x′ iff R(x, x′) 6= ∅. Define
also the effect of Γ on arrows.

c) Prove that Γ is left adjoint to ∇ : Set → Eff .

Here we see a contrast with the category of sheaves on a site. The ‘constant
sheaves functor’ ∆ : Set → Sh(C,Cov) is not right adjoint, but left adjoint
to Γ. Later we shall see, that ∇ does not have a right adjoint.

On the other hand, the embedding S → Eff does have a left adjoint,
the ‘separated reflection’: it sends (X,R) to (Γ(X,R), E) where E([x]) =
⋃

x∈X R(x, x).

Exercise 39 Again, define this functor on arrows and show that it is left
adjoint to the embedding S → Eff .

3.2 Structure of Eff

3.2.1 Finite products

Binary products in Eff are given as follows: for objects (X,R) and (Y, S),
the product (X,R) × (Y, S) is (X × Y,R × S) where R × S is defined as
follows:

(R×S)((x, y), (x′, y′)) = R(x, x′)×S(y, y′) = {n |n1 ∈ R(x, x′) and n2 ∈ S(y, y′)}

Exercise 40 a) Check the universal property for products given above.

b) Check that also the categories P and S have products, and that the
embeddings P → Eff , S → Eff and Set → Eff preserve products.

c) Check also that the functor Γ : Eff → Set preserves products.

44

3.2.2 Exponentials

Exponentials are less straightforward. Given (X,R) and (Y, S), the ex-
ponential (Y, S)(X,R) is the object (Φ, T) where Φ is the set of functions
X × Y → P(N). In order to define T , we first define, for F ∈ Φ, the
set E(F) of elements which testify that F “exists”; in other words: is
a function (X,R) → (Y, S). We define E(F) as the set of all 4-tuples
n = 〈n1, n2, n3, n4〉, such that n1 is an index for a partial recursive function
which testifies that F is extensional (see the definition of morphisms in Eff),
and similarly n2, n3, n4 for respectively strict, single-valued and total.

Given F,G ∈ P(N)X×Y , write [F ≤ G] for the set of indices n such that
for all x, y and all m ∈ F)(x, y), nm↓ and nm ∈ G(x, y). Now we put

T (F,G) = {〈k, l,m〉 | k ∈ E(F), l ∈ E(G),m ∈ [F ≤ G]}

The definition doesn’t look symmetrical. However, we have the following
exercise.

Exercise 41 Show that given 〈k, l,m〉 ∈ T (F,G), we can recursively find
from this an element of [G ≤ F].

Exercise 42 Check the universal property of (Y, S)(X,R) as just defined.

Exercise 43 In the definition of (Y, S)(X,R), the set Φ can be trimmed
down a bit. Check that for any object (X,R) of Eff , (X,R) is isomorphic
to (X+, R) where X+ consists of those elements x ∈ X for which E(x) =
R(x, x) is nonempty.

Now suppose that (X,EX) and (Y,EY) are assemblies (seen as objects of Eff
via the embedding S → Eff), and (Y,EY)(X,EX) = (Φ, T) as defined above.
Suppose F ∈ Φ such that E(F) 6= ∅. Then since the equality relation on
Y gives the empty set for two distinct elements y 6= y ′ of Y , we must have
(using the totality and single-valuedness of F) that for every x ∈ X there
is exactly one y ∈ Y such that F (x, y) is nonempty. Moreover, another use
of totality, combined with strictness, gives us a partial recursive function τ
with the property that for each x ∈ X and each n ∈ EX(x), τ(n)↓ and there
is a y ∈ Y such that τ(n) ∈ F (x, y). That is, F determines a unique function
f : X → Y and any element of E(F) determines a partial recursive function
which tracks f . Hence, the exponential (Y,EY)(X,EX) in Eff is isomorphic
to the assembly (T , E) where T is the set of morphisms (X,EX) → (Y,EY)
in S, and E(f) is the set of indices of partial recursive functions which track
f .

45

Exercise 44 Show that in fact, if (Y,EY) is an assembly then for any object
(X,R) of Eff , the exponential (Y,EY)(X,R) is isomorphic to an assembly.

Note that in general, there is more than one partial recursive function which
tracks a given morphism in S, and every partial recursive function has in-
finitely many indices. This means that, except for trivial cases, exponentials
of assemblies are almost never objects of P (of course, if (Y,EY) is isomorphic
to a set, under the embedding Set → S, then (Y,EY)(X,EX) is isomorphic to
an object of P, in fact it is isomorphic to a set).

Exercise 45 Consider the adjoint pair Γ a ∇ : Eff → Set.

a) Show that for objects (X,R) of Eff and A of Set,

Γ(X,R) ×A ∼= Γ((X,R) ×∇(A))

b) Conclude from part a) and the adjunction, that ∇ preserves exponen-
tials.

3.2.3 Natural numbers object

We write N for the object (N, R) with R(n, n′) = {n |n = n′}. Let 1
0
→ N

be the arrow determined by the function ∗ 7→ 0, and S : N → N the arrow
determined by the function n 7→ n+ 1. We claim that the diagram

1
0
→ N

S
→ N

is a natural numbers object in Eff .

To see this, suppose 1
a
→ (X,R)

f
→ (X,R) is another such diagram, with

a represented by A ∈ P(N){∗}×X and f by F ∈ P(N)X×X . Since A is total
and strict we find elements x0 ∈ X and m, k0 ∈ N such that m ∈ A(∗, x0)
and k0 ∈ E(x0). Let α and s be partial recursive functions which testify,
respectively, that F is total and strict in its second argument, that is: for
every x ∈ X and n ∈ E(x), there is y ∈ X with α(n) ∈ F (x, y); and for
every x, y ∈ X and n ∈ F (x, y), s(n) ∈ E(y). We now define a function

h(n) = (ξ(n), η(n)) : N → {(x, k) |x ∈ X, k ∈ E(x)}

as follows: let h(0) = (x0, k0). If h(n) = (xn, kn) has been defined, pick xn+1

such that α(kn) ∈ F (xn, xn+1), and let h(n + 1) = (xn+1, s(α(kn))). Note
that the function η : N → N is total recursive. We now have a functional
relation H : N×X → P(N) by H(n, x) = {〈n, a〉 | a ∈ R(xn, x)}. You should

46

check that H is strict, extensional and single-valued; and using η we find a
partial recursive function which testifies that it is total. So H represents an
arrow h : N → (X,R). We leave it to you to check that the diagram

1
0 //

a
""E

EE
EE

EE
EE

N

h
��

S // N

h
��

(X,R)
f

// (X,R)

commutes.

3.2.4 Finite Coproducts

Exercise 46 Suppose (X,R) satisfies R(x, x) = ∅ for all x ∈ X. Show that
(X,R) is initial in Eff .

For the disjoint sum (coproduct) of two objects (X,R) and (Y, S) of Eff ,
let X + Y be the disjoint sum in Set, and define R ⊕ S on X + Y by:
n ∈ (R ⊕ S)(u, v) iff either both u, v ∈ X and n = 〈0, k〉 with k ∈ R(u, v),
or both u, v ∈ Y and n = 〈1, k〉 with k ∈ S(u, v).

Exercise 47 As usual, check the universal property.

Exercise 48 Show that the categories P and S also have coproducts, and
that the embeddings into Eff preserve them.

Contrary to what you might think, the embedding ∇ : Set → Eff does not
preserve coproducts. In fact we have:

Proposition 3.1 Every arrow ∇({0, 1}) → 1+1 is constant, that is: factors
through one of the coproduct inclusions 1 → 1 + 1.

Proof. You should check that 1 + 1 is isomorphic to the object ({0, 1}, R)
with R(0, 0) = {0}, R(1, 1) = {1} and R(0, 1) = R(1, 0) = ∅. Suppose
F : {∗} × {0, 1} → P(N) represents an arrow in Eff . If t testifies that F is
total and s that F is strict in its second argument, then for some i ∈ {0, 1},
t(0) ∈ F (∗, i) hence s(t(i)) = i. Then the arrow represented by F factors
through i : 1 → 1 + 1.

Proposition 3.1 proves also that ∇ cannot have a right adjoint (why?). Ac-
tually, the argument of 3.1 can be used more generally, as the following
proposition says.

Proposition 3.2 For any set A, any map ∇(A) → N is constant.

Exercise 49 Prove proposition 3.2.

47

3.2.5 Finite limits

We start with equalizers. Suppose we have two parallel arrows

(X,R)
f

//

g
// (Y, S)

represented by F and G respectively. Define a map R′ : X → P(N) by:

R′(x, x′) = {〈n,m, k〉 |n ∈ R(x, x′) and for some y ∈ Y ,
m ∈ F (x, y) and k ∈ G(x, y)}

The elements m, k witness that “f(x) = g(x)”.

We have an obvious map (X,R′)
i
→ (X,R).

Proposition 3.3 The diagram

(X,R′)
i // (X,R)

f
//

g
// (Y, S)

is an equalizer in Eff .

Proof. Suppose (Z, T)
h
→ (X,R) is represented by H and such that fh =

gh. That means that we have a partial recursive function ϕ such that for
all z ∈ Z, y ∈ Y and n,m ∈ N, if for some x ∈ X both n ∈ H(z, x) and
m ∈ F (x, y) then ϕ(n,m)↓ and for some x′ ∈ X, ϕ(n,m)1 ∈ H(z, x′) and
ϕ(n,m)2 ∈ G(x′, y).

But we can modify ϕ a bit, using the single-valuedness of H (from n ∈
H(z, x) and ϕ(n,m)1 ∈ H(z, x′) we obtain an element of R(x, x′)) and
the extensionality of H, to construct a partial recursive ϕ′ such that: if
n ∈ H(x, z) and m ∈ F (x, y) then ϕ′(n,m)↓, ϕ′(n,m)1 ∈ H(z, x) and
ϕ′(n,m)2 ∈ G(x, y).

Now using that H is total, we find, for each k ∈ T (z, z) a pair 〈a, b〉
such that for some x ∈ X, a ∈ H(z, x) and b ∈ R′(x, x). That is, h factors
through i.

We need to see that the factorization is unique. But if we had another
pair 〈a′, b′〉 such that for x′ ∈ X, a′ ∈ H(z, x′) and b′ ∈ R′(x′, x) then we find
from this an element in R′(x′, x). We leave it to you to convince yourself
that this means that the factorization is indeed unique.

Pullbacks are, in any category, constructed from products and equalizers, so
here we content ourselves with giving an expression for the pullback of two
arrows with common codomain.

48

Given
(X,R)

f

��

(Y, S)
g

// (Z, T)

with f and g represented by F and G, construct an object (X × Y,U) as
follows:

U((x, y), (x′, y′)) = {〈a, b, c, d〉 | a ∈ R(x, x′), b ∈ S(y, y′) and for some
z ∈ Z, c ∈ F (x, z) and d ∈ G(y, z)}

There are arrows (X × Y,U)
π1→ (X,R) and (X × Y,U)

π2→ (Y, S) repre-
sented by P1((x, y), x

′) = {〈a, b〉 | a ∈ U((x, y), (x, y)), b ∈ R(x, x′)} and
P2((x, y), y

′) = {〈a, b〉 | a ∈ U((x, y), (x, y)), b ∈ S(y, y ′)}. Then

(X × Y,U)
π1 //

π2

��

(X,R)

f

��

(Y, S)
g

// (Z, T)

is a pullback in Eff . You should verify all this!

3.2.6 Monics and the subobject classifier

Before we treat general monomorphisms in Eff , we have a look at the fol-
lowing structure. For a set X and a map K : X → P(N) we think of the
statement n ∈ K(x) that “n witnesses, or realizes, thet x has property K”.
In view of this interpretation we shall also write n x ∈ K (n ‘forces’
x ∈ K) for this statement. So we think of K as a predicate on the set X.
We can now extend this ‘forcing’ to more complicated predicates formed by
logical connectives. Define:

n x ∈ K ∧ L iff n1 x ∈ K and n2 x ∈ L
n x ∈ K ∨ L iff (n1 = 0 and n2 x ∈ K) or (n1 = 1 and n2 x ∈ L)
n x ∈ K → L iff ∀m(m x ∈ K ⇒ nm↓ and nm x ∈ L)
n x ∈ ¬K iff ∀m(m 6 x ∈ K)

We can also define ‘constants’ ⊥ and > by: n x ∈ ⊥ never holds, and
n x ∈ > always holds.

Exercise 50 Check that n x ∈ ¬K if and only if n x ∈ K → ⊥.

49

We can consider the set P(N)X of all functions X → P(N) as preordered
by: K ≤ L if for some n, n x ∈ K → L for every x ∈ X. In this poset,
the meet K ∧ L of two elements is (up to isomorphism) the function which
assigns to each x the set {n |n x ∈ K ∧ L}; and similar for join, etc.

Now consider two sets X and Y . The operation P(N)Y → P(N)X×Y

given by composition with the projection X × Y → Y , is order-preserving,
as is easy to check. Moreover, this operation has both a right and a left
adjoint ∀x and ∃x: for K : X × Y → P(N), define

n y ∈ ∀xK iff for all x ∈ X, n (x, y) ∈ K
n y ∈ ∃xK iff for some x ∈ X, n (x, y) ∈ K

Exercise 51 Check the adjunctions.

Now consider an object (X,R) of Eff . The set X is equipped with an
‘equality’ R, which is transitive and symmetric in the sense that with the

notation just introduced we have:

For some n, n ∀x∀y∀z(R(x, y) ∧R(y, z) → R(x, z))
For some n, n ∀x∀y(R(x, y) → R(y, x))

We shall abbreviate the expression “for some n, n · · · ” by “ · · · ”.
Now given an object (X,R) and K : X → P(N) we say that

K is strict (for R) iff ∀x(x ∈ K → E(x))
K is extensional (for R) iff ∀xy(x ∈ K ∧R(x, y) → y ∈ K)

Such a K will be called a strict relation for (X,R).
We now return to the category Eff .

Lemma 3.4 Let f : (X,R) → (Y, S) be a morphism in Eff represented by
F : X × Y → P(N). Then f is a monomorphism if and only if

 ∀xx′y(F (x, y) ∧ F (x′, y) → R(x, x′))

Proof. Let (Z, T) be the object of Eff defined by Z = X × X, and n ∈
T ((a, b), (a′, b′)) if and only if n = 〈n1, n2, n3〉 such that n1 R(a, a′),
n2 R(b, b′) and for some c ∈ Y , n3 F (a, c) ∧ F (b, c). Then we have a
diagram

(Z, T)
π1 //

π2
// (X,R)

f
// (Y, S)

50

where π1 is represented by P1((a, b), x) = E((a, b)) ∧ R(a, x) and π2 by
P1((a, b), x) = E((a, b))∧R(b, x). You should check that fπ1 = fπ2; actually,
we have a pullback diagram

(Z, T)

π1

��

π2 // (X,R)

f

��

(X,R)
f

// (Y, S)

in Eff . Now if f is mono, it follows that π1 = π2; it is easy to derive
the expression in the lemma from this. Conversely, if the expression in the
lemma holds, then it follows that π1 = π2 and that this is an isomorphism
with inverse the map (X,R) → (Z, T) represented by (x, (a, b)) 7→ E(x) ∧
E(a, b) ∧R(x, a) ∧R(x, b). From this it follows that f is mono.

Suppose (X,R) is an object of Eff and K is a strict relation for (X,R).
Then we can form the object (X,RK) where

RK(x, x′) = {〈a, b〉 | a ∈ K(x) ∧ b ∈ R(x, x′)}

Exercise 52 Check the following statements:

a) (X,RK) is a well-defined object of Eff

b) RK represents an arrow: (X,RK) → (X,R)

c) This arrow is monic.

Monics of this form are called standard monos.

Proposition 3.5 Every mono is isomorphic to a standard mono.

Proof. Suppose F : X × Y → P(N) represents a monomorphism (X,R) →
(Y, S). Then the map K : Y → P(N) given by y 7→ {n |n ∃xF (x, y)} is
a strict relation for (Y, S), and you should check that F actually induces an
isomorphism from (X,R) to (Y, SK).

Corollary 3.6 The lattice Sub(Y, S) of subobjects of (Y, S) in Eff is iso-
morphic to the lattice of equivalence classes of strict relations for (Y, S),
where we have K ∼ L iff ∀y(E(y) → (K(y) ↔ L(y))).

Now let us consider the object Ω = (P(N,⇔) where A⇔ B = {n |n A↔
B}. Let us spell this out concretely: an n ∈ A ⇔ B is a pair 〈n1, n2〉 of
indices of partial recursive functions, such that for every a ∈ A, n1a↓ and
n1a ∈ B, and for every b ∈ B, n2b↓ and n2b ∈ A.

51

Exercise 53 Prove that there is a number n such that n ∈
⋂

A∈P(N)A ⇔
(A⇔ N)).

There is an arrow t : 1 → Ω, represented by the identity on P(N). This map
is monic (why?).

Now suppose that K : X → P(N) is a strict relation for (X,R). Then we
have an arrow from (X,R) to (P(N),⇔) represented by (x,A) 7→ {n |n

E(x) ∧ (A⇔ K(x))}. Let us call this map χK .

Proposition 3.7 We have a pullback diagram

(X,RK)

��

// 1

t

��

(X,R)
χK

// Ω

Moreover, the map χK is unique with this property.

The collection of strict relations for (X,R) is a Heyting algebra. The top
element is the constant function N, the bottom element is the constant
function ∅, and ∨, ∧ and → are as follows:

(K ∨ L)(x) = {n |n K(x) ∨ L(x)}
(K ∧ L)(x) = {n |n K(x) ∧ L(x)}
(K → L)(x) = {n |n E(x) ∧ (K(x) → L(x))}

The power object P(X,R) of (X,R) in Eff is the object (P(N)X , T) with

T (K,L) = {n |n “K is a strict relation” ∧ ∀x(E(x) → (K(x) ↔ L(x)))}

Just as in the case of presheaves and sheaves before, if f : (X,R) → (Y, S)
is a morphism, the operation f] : Sub(Y, S) → Sub(X,R) of pulling back
along f commutes with the Heyting structure and has both a left and a
right adjoint, ∃f and ∀f respectively. These maps are given as follows (we
assume that f is represented by F :

∃f(K)(y) = {n |n ∃x(K(x) ∧ F (x, y))}
∀f(K)(y) = {n |n E(y) ∧ ∀x(F (x, y) → K(x))}

Exercise 54 Suppose F : X×Y → P(N) represents an arrow f : (X,R) →
(Y, S)) in Eff .

a) Prove that f is epi if and only if ∀y(E(y) → ∃xF (x, y))

52

b) Suppose f is epi. Define R′ on X by

R′(x, x′) ≡ {n |n ∃y(F (x, y) ∧ F (x′, y))}

Prove that (X,R′) is an object of Eff and that (X,R′) ∼= (Y, S).

c) Prove that in Eff , every arrow factors as an epi followed by a mono.

d) Prove that in Eff , every arrow which is both epi and mono is an
isomorphism.

3.3 Intermezzo: interpretation of languages and theories in

toposes

We start by looking at many-sorted first order logic. We have a collection
of basic sorts X,Y,Xi, . . ., and a rule: if X1, . . . , Xn are sorts then so is
X1 × · · · ×Xn. We also have the terminal sort 1. For any sort X we have
variables xX of sort X, sufficiently many of them. Furthermore our language
may contain:

• Relation symbols R ⊆ X1 × · · · ×Xn (we think of the relation symbol
R together with its “arity”, that is the sorts of its arguments);

• Function symbols F : X1×· · ·×Xn → Y . We may also have constants
of sort Y , which may be thought of as function symbols c : 1 → Y .
For any list of sorts X1, . . . , Xn and any 1 ≤ i ≤ n we have a function
symbol πi : X1 × · · · ×Xn → Xi.

Terms (which are always of a specified sort) are built up from variables,
constants and function symbols as usual, with one additional term-forming
operation: if X1, . . . , Xn is a list of sorts and ti is a term of sort Xi for
1 ≤ i ≤ n, then we have a term

〈t1, . . . , tn〉

of sort X1 × · · · ×Xn.
When we write t(x1, . . . , xn) for a term t (of sort Y say, and the xi

variables of sort Xi), we always understand this as meaning that the list
x1, . . . , xn contains all variables actually occurring in t (but the list may be
longer).

We shall now say what an interpretation [[·]] of such a language in a topos
E is. First, for any basic sort X we have an object [[X]] of E . This then
extends to an object [[X]] for any sort X by the clauses:

53

• [[1]] is a terminal object of E ;

• If X1, . . . , Xn is a list of sorts such that [[X1]], . . . , [[Xn]] have been
defined, choose a product

[[X1]] × · · · × [[Xn]]

and put [[X1 × · · · ×Xn]] = [[X1]] × · · · × [[Xn]].

In the interpretation of sorts there is some choice of terminal object and
products, but once the interpretation of the basic sorts has been fixed, the
rest is determined up to isomorphism. This situation will recur later on.

Secondly, for any function symbol F : X1 × Xn → Y , [[F]] is to be a
morphism in E from [[X1 ×· · · ×Xn]] to [[Y]]. For the special function sym-
bols πi we require that they be interpreted as the corresponding projections
(which are part of the product structure of [[X1 × · · · ×Xn]]).

Thirdly, for a relation symbol R ⊆ X1×· · ·×Xn, [[R]] will be a subobject
of [[X1 × · · · ×Xn]].

Suppose we are given an interpretation [[·]] of a language in a topos E . For
any term t(x1, . . . , xn) we have then a morphism [[t]] : [[X1 × · · · × Xn]],
defined as follows:

• If t is a variable xXi , [[t]] is the i-th projection;

• If t1, . . . , tn are terms of sorts Y1, . . . , Yn respectively, and xX1
1 , . . . , xXm

m

is a list of variables containing all the variables in the ti, and by in-
duction hypothesis we have

[[ti]] : [[X1 × · · · ×Xm]] → [[Yi]]

then if F : Y1×· · ·×Yn → Z is a function symbol, we let [[F (t1, . . . , tn)]]
be the composite

[[X1 × · · · ×Xm]]
〈[[ti]]〉ni=1−→ [[Y1 × · · · × Yn]]

[[F]]
→ [[Z]]

• If t1, . . . , tn, Y1, . . . , Yn and xX1
1 , . . . , xXm

m are as in the previous item,
then

[[〈t1, . . . , tn〉]]

is the unique map from [[X1 × · · · ×Xm]] to [[Y1 × · · · × Yn]] such that
its composition with the i-th projection is [[ti]], for each i.

54

Exercise 55 Write out t where t = f(f(x, y), g(x, u, c)) where x, y, u are
variables, c a constant and f and g function symbols of appropriate arities.

Next, we extend the interpretation to formulas. Formulas are built up from:
atomic formulas (which are of the form R(t1, . . . , tn) for a relation symbol
R and t1, . . . , tn of the right sorts, or equalities t = s when t and s have
the same sort) by the logical connectives ∧, ∨, →, ¬ and the quantifiers
∀xX and ∃xX . As with terms, by ϕ(x1, . . . , xn) we understand that all free
variables of ϕ are in the list x1, . . . , xn.

Given ϕ(xX1
1 , . . . , xXn

n), [[ϕ]] will be a subobject of [[X1 × · · · ×Xn]]. We
start by giving [[ϕ]] for atomic ϕ.

• Suppose ϕ = R(t1, . . . , tk) where ti are terms of sort Yi. By the inter-
pretation of terms we have

[[ti(x1, . . . , xn)]] : [[X1 × · · · ×Xn]] → [[Yi]]

and by definition of interpretation we have a subobject [[R]] of [[Y1 ×
· · ·×Yk]]. We let [[ϕ(x1, . . . , xn)]] be the subobject of [[X1 ×· · ·×Xn]]
given by the pullback

[[ϕ]]

��

// [[R]]

��

[[X1 × · · · ×Xn]]
〈[[t1]],...,[[tk]]〉

// [[Y1 × · · · × Yk]]

• Suppose ϕ = (t = s)(x1, . . . , xn). We have [[s]], [[t]] : [[X1×· · ·×Xn]] →
[[Y]], where Y is the sort of t and s. We let [[t = s]] be the equalizer
of [[s]] and [[t]].

For the propositional connectives ∧, ∨, ¬ and →, we need that Sub(X) is
a Heyting algebra. This is the case in any topos E . We state the following
facts without proof:

• Every topos is a regular category;

• Every topos has finite colimits, and the initial object is strict;

• In every topos, every operation φ] : Sub(Y) → Sub(X) of pulling back
along φ : X → Y has a right adjoint ∀φ (note that a left adjoint exists
since E is regular).

55

We have then, that the meet of two subobjects is given by a simple pullback.
The join of two subobjects A

m
→ X and B

n
→ X is the image of the arrow

[m,n] : A + B → X. Implication A → B (for A
m
→ X and B

n
→ X) is

∀m(A ∧B). ¬A is A→ ⊥ where ⊥ is the initial subobject 0 → X.
As for the adjoints ∃φ and ∀φ, we have the following fact: if

X

g

��

φ
// Y

f

��

X ′
φ′

// Y ′

is a pullback square, then for any subobjectA of Y , we have that ∃g(φ
](A)) =

φ′](∃f (A)) as subobjects of X ′; for the maps ∃g and ∃f are given by images,
and these are stable under pullback since E is regular. By mirroring the pull-
back diagram we get, for a subobject B of X ′, that ∃φ(g](B)) = f](∃φ′(B)).
Now taking right adjoints we see that forA ∈ Sub(Y), ∀g(φ

](A)) = φ′](∀f (A)).
This fact is called the Beck-Chevalley condition.

We now return to the definition of [[ϕ(x1, . . . , xn)]]. Suppose ϕ(x1, . . . , xn) ≡
∃yY ψ(y, x1, . . . , xn) and by inductive hypothesis we have defined ψ as a sub-
object of [[Y ×X1×· · ·×Xn]]. Then [[ϕ]] is ∃π([[ψ]]), where π is the projection
from [[Y ×X1 × · · · ×Xn]] to [[X1 × · · · ×Xn]]. The definition of [[∀yY ψ]]
is quite similar and uses ∀π.

The following lemma holds.

Lemma 3.8 Suppose ϕ(xX , x1, . . . , xn) is a formula and t(y) is a term of
sort X with a variable of sort Y . Suppose that t is substitutable for x in ϕ.
Then we have a pullback diagram

[[ϕ[t/x]]]

��

// [[ϕ]]

��

[[Y ×X1 × · · · ×Xn]]
[[t(y,~x)]]

// [[X1 × · · · ×Xn]]

The proof is a straightforward induction on ϕ, where for the quantifier steps
one uses the Beck-Chevalley condition.

Summing up, we have defined an interpretation [[ϕ]] as subobject of
[[X1 × · · · ×Xn]], for any sequence of variables xX1

1 , . . . , xXn
n which contains

all the free variables of ϕ; starting from a basic interpretation of the sorts, the
relation symbols and the function symbols. We now say that ϕ(x1, . . . , xn)
is true under this interpretation, if [[ϕ]] is the maximal subobject of [[X1 ×
· · · ×Xn]].

56

Exercise 56 Prove that this does not depend on the list x1, . . . , xn; in fact,
if xi1 , . . . , xik is the sublist of all the free variables of ϕ, then ϕ(x1, . . . , xn)
is true if and only if ϕ(xi1 , . . . , xik) is true.

We say that the formula is valid in E , if ϕ is true for any interpretation [[·]]
of its language in E .

Theorem 3.9 Every theorem of intuitionistic predicate logic is valid in ev-
ery topos E.

The interpretation of first-order logic in a topos E can be extended to higher-
order type theory. We extend the collection of sorts by the following:

• We have a basic sort N (for natural numbers);

• Given two sorts X and Y , we have a sort Y X of ‘functions Y → X’;

• For each sort X we have a power sort P(X).

Together with a few new relation and function symbols, as well as another
term forming operation:

• We have a constant 0 of type N and a function symbol S : N → N ;

• We have a function symbol evX,Y : Y X × X → Y and for any term
t of sort Y with free variables xX , x1, . . . , xn, we have a term λxX .t
of sort Y X with free variables x1, . . . , xn (the variable xX is bound in
λxX .t);

• We have a relation symbol ∈X⊆ X ×P(X);

• For any formula ϕ with free variables xX , x1, . . . , xn we have a term
{xX : ϕ} of sort P(X) and with free variables x1, . . . , xn (again, xX is
bound in {xX : ϕ});

• For any term s of sort X with free variables among x1, . . . , xn and any
term t of sort X with free variables among xX , x1, . . . , xn (where it is
understood that x does not appear in the list x1, . . . , xn) we have a
term Rec[s; t] of sort X and free variables x1, . . . , xn, y

N where yN is
a fresh variable of sort N .

We then extend the interpretation [[·]] in the following, obvious, way:

• [[N]] is a natural numbers object of E , and [[0]] and [[S]] are the struc-
ture morphisms for the natural numbers object;

57

• [[Y X]] is an exponential [[Y]][[X]], and [[evX,Y]] is to be the evaluation
morphism which is part of the structure of an exponential. If t is a
term of sort Y with free variables xX , xX1

1 , . . . , xXn
n , and inductively t

is interpretated as [[t]] : [[X ×X1 × · · · ×Xn]] → [[Y]], then [[λxX .t]] :
[[X1 × · · · ×Xn]] → [[Y X]] is to be the exponential transpose of [[t]];

• [[P(X)]] is a chosen power object of [[X]], and [[∈X]] is the canonical
‘element relation’ which is part of the structure of a power object;

• If ϕ has been interpreted as a subobject [[ϕ]] of [[X ×X1 × · · · ×Xn]],
then [[{xX : ϕ}]] : [[X1 × · · · × Xn]] → [[P(X)]] is the unique map
corresponding to [[ϕ]] according to the definition of a power object;

• If [[s]] : [[X1×· · ·×Xn]] → [[X]] and [[t]] : [[X×X1×· · ·×Xn]] → [[X]]
are interpretations of s and t, then [[Rec[s; t]]] : [[X1×· · ·×Xn×N]] →
[[X]] is the unique map corresponding to [[s]] and [[t]] given by the
defining property of a natural numbers object in a cartesian closed
category.

We can now write down a number of statements in our language which are
easily seen to be valid.

Exercise 57 Convince yourself that the following statements are valid (where
all variables and terms are of the appropriate sort, if not indicated):

a) x = 〈π1(x), . . . , πn(x)〉

b) evX,Y (λxX .t, x′) = t[x′/x]

c) ϕ[x′/x] ↔ x′ ∈X {xX : ϕ}

d)
Rec[s : t][0/y] = s

Rec[s : t][S(y)/y] = t[Rec[s : t]/y]

e) ∀xX∃!yY ϕ→ ∃!fY X
∀xXϕ[evX,Y (f, x)/y]

Here the ‘unique existence’ quantifier ∃! is an abbreviation: ∃!xϕ is
short for ∃x∀y(ϕ(y) ↔ y = x). The statement in this item is called
the principle of ‘unique choice’.

A very general way to describe inductively the truth of formulas under an in-
terpretation, is the so-called Kripke-Joyal semantics. Suppose ϕ(x1, . . . , xn)
is interpreted as [[ϕ]] � [[X1 × · · · × Xn]]. For an object E of E and ar-
rows αi : E → [[Xi]] (the arrows αi are called “generalized elements” of the
[[Xi]]), we write

E ϕ(α1, . . . , αn)

58

for the statement that the map 〈α1, . . . , αn〉 : E → [[X1 × · · · ×Xn]] factors
through the subobject [[ϕ]].

With this notation, one can give another inductive description of the
truth of formulas. We shall just write α for α1, . . . , αn (this is actually no
loss of generality). We have:

• E (t = s)(α) iff [[t]]◦α = [[s]]◦α

• E (ϕ ∧ ψ)(α) iff E ϕ(α) and E ψ(α)

• E (ϕ ∨ ψ)(α) iff there are arrows β1 : E1 → E and β2 : E2 → E
such that the map [β1, β2] : E1 +E2 → E is an epimorphism, and both
E1 ϕ(αβ1) and E2 ψ(αβ2)

• E (ϕ → ψ)(α) iff for every arrow β : E ′ → E, if E′ ϕ(αβ) then
E′ ψ(αβ)

• E ⊥(α) iff E is initial in E

• E ∃xXϕ(x, α) iff there is an epimorphism β : E ′ → E and a map
γ : E′ → [[X]] such that E ′ ϕ(〈γ, αβ〉)

• E ∀xXϕ iff for all β : E ′ → E and all γ : E ′ → [[X]], E ′ ϕ(γ, αβ)

Two important features of this definition are:
Monotonicity: if E ϕ(α) then for any β : E ′ → E we have E ′ ϕ(αβ).

Local Character: if {Ei
βi
→ E | i ∈ I} is an epimorphic family (meaning that

∀i(fβi = gβi) implies f = g for two parallel f, g) and for all i, Ei ϕ(αβi),
then E ϕ(α).

The forcing definition we gave for presheaves and sheaves is actually
a form of the Kripke-Joyal semantics. For, by local character it suffices
to look at E ϕ(α) for representable E (every presheaf is a colimit of
representables, hence covered by a sum of representables); and α : yC →
[[X]] corresponds uniquely to some x ∈ [[X]](C) by the Yoneda lemma.

In Eff , we do not have ‘representable presheaves’ but we have something
similar.

Proposition 3.10 In Eff , for every object (X,R) there is an object (P, S)
of P and an epimorphism (P, S) → (X,R).

Proof. Let P = {(x, n) |n ∈ E(x)} (recall that E(x) abbreviates R(x, x)).
Define S by

S((x, n), x′, n′)) = {n |x = x′ and n = n′}

59

Let F : P ×X → P(N) be defined as

F ((x, n), x′) = {〈n, k〉 | k ∈ R(x, x′)}

The proof that F represents an epimorphism (P, S) → (X,R) is left to you.

Exercise 58 Fill in the missing details of the proof of proposition 3.10,
using exercise 54.

Proposition 3.11 Every object of P is projective in Eff .

Proof. Suppose (P, S) is an object of P and F represents an epimorphism
(X,R) → (P, S). We have to show that this has a section. Without loss
of generality we may assume that for each p ∈ P , E(p) is a singleton. By
the characterization of epis in exercise 54 there is a number e such that for
every p ∈ P and every n ∈ E(p), en↓ and there is an x ∈ X such that
en ∈ F (x, p). Using strictness of F we find for such x, st(en) ∈ E(x). By
the axiom of choice, choose for each p an x = f(p) such that en ∈ F (f(p), p)
and st(en) ∈ E(f(p)). Define G : P ×X → P(N) by

G(p, x) = R(x, f(p))

Then G represents a section of F , as is left for you to check.

From proposition 3.10 it follows that if we want to do Kripke-Joyal semantics
for Eff , we can restrict the definition to P · · · for partitioned assemblies
P . Moreover, from proposition 3.11 it follows that the clauses for disjunction
and existential quantification can be simplified to:

• P (ϕ ∨ ψ)(α) iff P is a coproduct A + B and α = [α1, α2], and
A ϕ(α1) and B ψ(α2)

• P ∃xXϕ(α) iff there is a map β : P → [[X]] such that P ϕ(〈β, α〉)

3.4 Elements of the logic of Eff

We continue the study of Eff . Recall the characterization of power objects
from section 3.2.6. In every topos, any arrow f : X → Y gives rise to a map
∃f : P(X) → P(Y): this is the map which corresponds to the subobject of
P(X) × Y which is the image of the subobject ∈X of P(X) ×X under the
map idP(X) × f . In logical terms, we have:

y ∈ ∃f (A) ↔ ∃x(x ∈ A ∧ f(x) = y)

60

In Eff , the map ∃f is represented by

(K,L) 7→ E(K) ∧ {n |n ∀yY (y ∈ L↔ ∃xX(F (x, y) ∧ x ∈ K))}

when F represents f . It is easy to see, and in fact valid in general, that if f
is epi, so is ∃f .

We call an object X of Eff uniform iff there is an epi ∇(A) → X.

Exercise 59 Prove that the following two assertions are equivalent for an
object X of Eff :

a) X is uniform

b) X is isomorphic to an object (Y,R) which has the property that
⋂

y∈Y E(y) 6= ∅

The following proposition generalizes 3.2.

Proposition 3.12 If X is uniform, then the following statement is true in
Eff :

∀A : P(X ×N)[∀x : X∃n : N((x, n) ∈ A) → ∃n : N∀x : X((x, n) ∈ A)]

Exercise 60 Prove this.

Proposition 3.13 In Eff , every power object is uniform.

Proof. First we prove this for power objects of assemblies. Let (X,R) be an
object of S; so we have a function E : X → P(N) such that R(x, y) is given
by: R(x, y) = E(x) if x = y and ∅ otherwise. ConsiderK : X → P(N). Then
K is always extensional for R; to make it strict, let K ′(x) = {〈k, n〉 | k ∈
K(x), n ∈ E(x)}. Check that this defines a map: ∇(P(N)X) → P(X) and
that this map is epi.

Now for every X there is an epi f : P → X for some partitioned assembly
P ; then, as we have seen, ∃f defines an epi P(P) → P(X). Since P(P) is
uniform, P(X) is.

As a special application of propositions 3.12 and 3.13 we have that the
following principle of higher-order arithmetic is true in Eff :

∀F ⊆ P(N) ×N [∀U ⊆ N∃n((U, n) ∈ F) → ∃n∀U((U, n) ∈ F)]

which is called the Uniformity Principle.

We now give an inductive definition for truth of a first order formula (relative
to an interpretation [[·]] in Eff). For simplicity we assume ϕ is of the form
ϕ(a); we define the inductive rules for “n ϕ(a)”.

61

• n ϕ(a) ∧ ψ(a) iff n1 ϕ(a) and n2 ψ(a)

• n ϕ(a) ∨ ψ(a) iff n1 = 0 and n2 ϕ(a), or n1 6= 0 and n2 ψ(a)

• n ⊥ never holds

• n ϕ(a) → ψ(a) iff n1 ∈ E(a) and for all m, if m ϕ(a) then n2m↓
and n2m ψ(a)

• n ∃xϕ(x, a) iff there is an x ∈ X such that n1 ∈ E(x) and n2

ϕ(x, a) (here we assume that the sort of x is interpreted by the object
(X,R), so E(x) = R(x, x))

• n ∀xϕ(x, a) iff n1 ∈ E(a) and for all x ∈ X and all m ∈ E(x), n2m↓
and n2m ϕ(x, a) (with the same assumption on x as in the previous
clause)

Then, if the atomic formulas are interpreted by strict relations, the function
a 7→ {n |n ϕ(a)} is also a strict relation.

We shall now have a look at some principles of higher-order arithmetic
which are true in Eff . First, two easy remarks.

Proposition 3.14 i) The standard interpretation of primitive recursive
functions in Eff interprets every primitive recursive function ‘as itself ’
(as map Nk → N).

ii) n ¬¬ϕ(a) iff n1 ∈ E(a) and the set {m |m ϕ(a)} is nonempty.

Proposition 3.15 Markov’s Principle is the axiom

∀U :P(N)[∀n(n ∈ U ∨ ¬(n ∈ U)) ∧ ¬¬∃n(n ∈ U) → ∃n(n ∈ U)]

Markov’s Principle is true in Eff .

Proof. Suppose U : N → P(N) is a strict relation, m ∀n(n ∈ U ∨ ¬(n ∈
U)) and k ¬¬∃n(n ∈ U). Then m codes a total recursive function such
that for all n, if (mn)1 = 0 then (mn)2 n ∈ U . By the very existence of
k we know that there must be an n with (mn)1 = 0. So if F is the partial
recursive function which, with input m, k, ouputs 〈n, (mn)2〉 for the first n
such that (mn)1 = 0, then F (m, k)↓ and F (m, k) ∃n(n ∈ U). Hence any
index for F forces the statement in question.

62

Proposition 3.16 Church’s Thesis is (in the context of constructivism) the
name for the statement that every function N → N is recursive:

∀f :NN∃e∀n∃m(T (e, n,m) ∧ U(m) = f(n))

Church’s thesis is true in Eff .

Proof. In section 3.2.2 we have seen that NN is the assembly (M,E) where
M is the set of morphisms N → N in S (or in Eff), and E(f) is the set
of indices of partial recursive functions which track f . But any morphism
N → N in Eff is (by the requirement that it has a tracking) total recursive;
so NN is isomorphic to the assembly (Rec, E) where Rec is the set of total
recursive functions, and E(f) is the set of indices for f . In order to find
an n such that n forces Church’s Thesis, we have to find a partial recursive
function φ such that for every f ∈ Rec and every e ∈ E(f),

(φ(e))2 ∀n∃m(T (e, n,m) ∧ U(m) = f(n))

Let φ(e)1 = e and φ(e)2 such that for each n, φ(e)2n is the least m such
that T (e, n,m). Then any index for ψ forces Church’s Thesis.

Proposition 3.17 Brouwer’s Principle is the statement that every function
from NN to N is continuous, that is:

∀Φ:N (NN)∀f :NN∃n∀g:NN [∀i ≤ n(f(i) = g(i)) → Φ(f) = Φ(g)]

Brouwer’s Principle is true in Eff .

Proof. We repeat the analysis according to section 3.2.2 for the object
N (NN). A morphism NN → N in Eff is a function Rec → N which has a
tracking. That means, we have a partial recursive function F such that for
every index e of a total recursive function, F (e) is defined, and if e and e′

are indices of the same total recursive function, then F (e) = F (e′). Such a
function F is called an effective operation in Recursion Theory. Regarding
effective operations, there is the following theorem in Recursion Theory:

Kreisel-Lacombe-Shoenfield Theorem (KLS theorem). There is a partial
recursive function ϕ of two variables, such that for every index f of an
effective operation F and every index e of a total recursive function, ϕ(f, e)↓
and for every index e′ of a total recursive function it holds that whenever
ex = e′x for all x ≤ ϕ(f, e), then F (e) = F (e′).

Using the KLS theorem it should be easy to find an n which forces Brouwer’s
Principle.

Exercise 61 Use propositions 3.16 and 3.17 in order to prove that the
object NN is not projective in Eff .

63

4 Morphisms between toposes

In this section we consider two kinds of morphisms between toposes; the two
kinds reflect the situation that a topos is both an algebraic (logical) and a
geometric (topological) object.

Definition 4.1 Let E and F be toposes. A logical functor E → F is a func-
tor L which preserves the categorical structure in the definition of ‘topos’,
that is:

• finite limits

• exponentials

• subobject classifier

Exercise 62 Show that L also preserves power objects.

In fact, it can be shown that a logical functor preserves much more: it
preserves finite colimits, and the natural numbers object (if it exists).

The word ‘preserves’ in definition 4.1 means of course: up to isomor-
phism. More specifically, for products we demand that the map

L(X × Y)
〈L(πX),L(πY)〉

// L(X) × L(Y)

is an isomorphism. Given this, there is also a canonical map

L(Y X) → L(Y)L(X)

(which one?) which we require to be an isomorphism. For the subobject
classifier we have: if L preserves finite limits, it preserves monos, so we have
a map

θ : L(ΩE) → ΩF

whic classifies the subobject 1 ∼= L(1)
L(t)
→ L(ΩE); and we require θ to be an

isomorphism.

Definition 4.2 Again let E ,F be toposes. A geometric morphism E → F
is a pair f = (f∗, f

∗) of functors with f∗ : E → F and f ∗ is left adjoint to
f∗ and f∗ preserves finite limits. The functors f ∗ and f∗ are called inverse
image and direct image respectively.

64

Remarks 1. The inverse image f ∗ preserves not only finite limits, but, being
a left adjoint, also all colimits. Of course, the functors f∗ and f∗ determine
each other up to isomorphism. If E and F are Grothendieck toposes, then
by the adjoint functor theorem any functor which preserves all colimits has
a right adjoint; hence the functor f ∗ specifies a geometric morphism.
2. It happens that f ∗ is a logical functor; also f∗ can be logical.

Examples

1. Any continuous map f : X → Y of topological spaces induces a geo-
metric morphism

f : Sh(X) → Sh(Y)

between the toposes of sheaves. This is a special case of 3. below.

2. Any functor F : C → D between small categories gives a geometric
morphism

f : SetC
op

→ SetD
op

The functor f ∗ is given by composition with F op : Cop → Dop: f∗(Q)(C) =
Q(F (C)). Because limits and colimits are calculated ‘pointwise’ in
presheaf categories, f ∗ preserves both. In fact, f ∗ has not only a right
adjoint f∗, but also a left adjoint f!.

The right adjoint f∗ is easily computed using the Yoneda lemma:
f∗(P)(D) is naturally isomorphic, by the Yoneda lemma, to SetD

op
(yD, f∗(P)),

which is, by the adjunction, SetC
op

(f∗(yD), P).

As for f!, if it exists we must have by the adjunction and the Yoneda
lemma, for representables yC :

SetD
op

(f!(yC), Q) ∼= SetC
op

(yC , f
∗(Q))

∼= f∗(Q)(C)
∼= Q(F (C))
∼= SetD

op
(yF (C), Q)

We conclude that f!(yC) ∼= yF (C) naturally. This then determines f!

uniquely up to isomorphism; for every presheaf is a colimit of rep-
resentables (proposition 1.1) and f!, being a left adjoint, preserves
colimits. We see that f! is in fact the left Kan extension of the com-

posite C
F
→ D

yD→ SetD
op

along yC : C → SetC
op

. There is a similar
notion of ‘right Kan extension’, and f∗ is the right Kan extension of

the composite D
yD→ SetD

op f∗

→ SetC
op

along yD.

65

3. Suppose C and D are categories with finite limits which are equipped
with Grothendieck topologies CovC and CovD. Let F : D → C be a
functor which preserves finite limits and covers, which means: if R
is a covering sieve on D (R ∈ CovD(D)) then the sieve generated by
{F (f) | f ∈ R} is an element of CovC(F (D)). Then there is a geometric
morphism f : Sh(C,CovC) → Sh(D,CovD).

For, in this situation the functor f ∗ : SetC
op

→ SetD
op

which is
by composition with F op as in the previous example, is easily seen
to map sheaves to sheaves, so restricts to a functor Sh(C,CovC) →
Sh(D,CovD), and this functor has a left adjoint which is the composi-
tion of (the restriction to sheaves of) f! and the sheafification functor,
and this preserves finite limits.

Note that example 1) is an instance of this; for a sheaf on a topological
space X is a sheaf on the site (O(X),Cov) where O(X) is the category
(poset) of opens of X and Cov is the ordinary covering relation. A
continuous map f : X → Y gives a map f−1 : O(Y) → O(X) (inverse
image!) which commutes with finite intersections (limits) and unions
(preserves covers).

4. For every Grothendieck topos E there is a unique geometric morphism
γ to Set. In Set, every set X is the colimit of a diagram of X copies
of 1, hence γ∗(X) must be the colimit of a diagram of X copies of
γ∗(1) ∼= 1 in E . In fact, this functor (which obviously preserves fimite
limits) has a right adjoint γ∗: for an object E of E , γ∗(E) is the set
E(1, E). The functors γ∗ and γ∗ are called constant sheaves functor
and global sections functor respectively.

5. The topos Eff is not a Grothendieck topos. In fact, the situation
here is rather the opposite of the case with Grothendieck toposes: the
global sections functor Γ : Eff → Set is not a right adjoint, but a left
adjoint; its right adjoint is ∇ : Set → Eff , and we have a geometric
morphism Set → Eff .

6. For any site (C,Cov) we have a geometric morphism Sh(C,Cov) →
SetC

op
: the direct image functor is the inclusion, and the inverse image

functor is sheafification.

7. Suppose E is a topos and X an object of E . Recall the definition of

the “slice category” E/X: objects are maps Y
f
→ X with codomain

X; for two such maps f, f ′, an arrow f → f ′ is an arrow g : dom(f) →

66

dom(f ′) such that the triangle

Y
g

//

f

AA
AA

AA
AA

Y ′

f ′

��

X

commutes. E can of course be identified with the slice E/1. The various
slice categories are connected by functors: for f : X → Y we have a
functor f ∗ : E/Y → E/X by pull back along f . In particular there is
X∗ : E → E/X.

The fundamental theorem of topos theory says that every slice E/X
is again a topos, and that every functor f ∗ is logical. Moreover, f ∗

has both adjoints, Σf and Πf . Therefore the pair (Πf , f
∗) defines

a geometric morphism E/X → E/Y , with an inverse image functor
which is logical.

8. Another example where the inverse image functor is logical, is the
unique geometric morphism from G-Set to Set, for a group G. Here
G-Set is the category of sets with a right G-action, i.e. presheaves on G
(the first example of a presheaf category in section 1). This geometric
morphism, γ, can be decribed as follows: for a set S, γ∗(S) is S with
the trivial G-action; for a G-set X, γ∗(X) is the set of fixed points of
X under G, i.e. {x ∈ X | ∀g ∈ G (xg = x)}. The functor γ∗ is logical
and has also a left adjoint: γ! sends a G-set X to its set of orbits X/G.

The category of toposes and logical functors has an initial object: the free
topos. The free topos is constructed syntactically. We refer to tha language
outlined in section 3.3: we have a collection of sorts which contains 1, N , is
closed under ×, (·)(·) and P(·) and terms as given there. We now consider
axioms: such as given in exercise 57 (we only sketch the construction here).
This leads to a theory T . For any formula ϕ(xX1

1 , . . . , xXn
n) (recall our

convention that the list x1, . . . , xn contains all free variables of ϕ) we have
an object (X1 × · · · ×Xn, ϕ) which we think of as {~x ∈ X1 × · · · ×Xn |ϕ}.
Given two such objects (X1 × · · · × Xn, ϕ) and Y1 × · · · × Ym, ψ) (where
we may assume that the lists of variables ~x and ~y are disjoint), an arrow
(X1 × · · · ×Xn, ϕ) → (Y1 × · · · × Ym, ψ) is an equivalence class of formulas
ρ(~x, ~y) such that

T ` ∀~x (ϕ(~x) → ∃!~yρ(~x, ~y))
T ` ∀~x~y (ρ(~x, ~y) → ϕ(~x ∧ ψ(~y))

67

where two such formulas ρ and rho′ define the same morphism if

T ` ∀~x~y(ρ(~x, ~y) ↔ ρ′(~x, ~y))

One can now formally prove that this is a topos, the free topos F . Since
there is a unique logical functor from F to any topos E and logical functors
preserve truth of formulas, exactly those formulas are true in F which are
true in every topos.

Instead of considering the theory T , one can also take extra axioms (like,
for example, Church’s Thesis), and form a theory T ′ on which to construct
a topos. Or, one can expand the language by extra sorts and terms; for
example, if C is a small category, one could add an extra sort C for every
object C of C, and an extra function symbol f : C → D for every arrow
f : C → D in C. One obtains the free topos on C, FC . There is an embedding
ηC : C → FC and for every functor F : C → E where E is a topos, there is a
unique logical functor F̃ : FC → E such that

C
ηC //

F
 @

@@
@@

@@
@ FC

F̃
��

E

commutes.

68

5 Literature

A good introduction to the field of topos theory is the book Sheaves in

Geometry and Logic by S. Mac Lane and I. Moerdijk. Both the connec-
tions to geometry and to logic are treated in detail. For a more category-
theoretic treatment (and not so many applications), see Topos Theory by
P.T. Johnstone. Recently, Johnstone has completed the first two volumes
of an intended three-volume compendium on topos theory, Sketches of an

Elephant.
For formal aspects of topos theory and also other category theory, such

as the construction of the free topos (but also, the free cartesian closed
category on a category) and a good formulation of the language of toposes,
see J. Lambek and Ph. Scott, Introduction to higher-order categorical logic.

For the effective topos, there is as yet nothing better than the seminal
paper by J.M.E. Hyland, The effective topos, in: Troelstra and Van Dalen
(eds), The L.E.J.Brouwer Centenary Symposium, North-Holland 1982, pp.165–
216.

69

Index

amalgamation, 19, 22
assemblies, 43

partitioned, 43
associated sheaf, 26
atomic Boolean algebra, 28

Beck-Chevalley condition, 56
Boolean topos, 33
Brouwer’s Principle, 36, 63

Cauchy complete, 9
Church’s Thesis, 63
closed sieves, 29
closed subpresheaf, 22
compatible family, 19, 22
constant objects functor, 43
constant sheaves functor, 66
covering sieve, 19

Dedekind reals in a topos, 38
dense subpresheaf, 22
direct image of a geometric mor-

phism, 64

Eff , 41
effective operation, 63
effective topos, 41

free topos, 68
Freyd topos, 33

generalized elements, 58
geometric morphism, 64
global sections functor, 44, 66
Grothendieck topology, 19
Grothendieck topos, 30

Heyting algebra, 9
Heyting category, 11

Heyting implication, 9

idempotent, 9
indecomposable object, 8
inverse image of a geometric mor-

phism, 64

Kreisel-Lacombe-Shoenfield Theo-
rem, 63

Kripke semantics, 14
Kripke-Joyal semantics, 58

Lawvere-Tierney topology, 20
local character (of Kripke-Joyal se-

mantics, 59
logical functor, 64

Markov’s Principle, 62
monotonicity (of Kripke-Jopyal se-

mantics), 59

‘plus’ construction, 23
power object, 7
presheaf on a topological space, 19
presheaves, 1
projective object, 8

representable presheaves, 1

separated presheaf, 19, 22
separated reflection, 44
sheaf, 23
sheaf on a site, 30
sheaf on a topological space, 19
sheafification, 26
sieve, 6
site, 30
stable coproducts, 8
standard mono, 51

70

strict relation, 50
subobject classifier, 5
subpresheaf, 6

topology
closed, 28
open, 28

topology
¬¬, 27
atomic, 28
dense, 27

tracking of a morphism in S, 43
truth of formula in topos, 56

Uniformity Principle, 61
universal closure operation, 20

validity of a formula in a topos, 57

71

