Retake Exam Category Theory and Topos Theory June 16, 2014; 10:00–13:00

THIS EXAM CONSISTS OF FIVE PROBLEMS

Advice: first do those problems you can do right away; then, start thinking about the others.

Good luck!

Exercise 1.

- a) Show by a counterexample that a faithful functor need not reflect terminal objects.
- b) Let \mathcal{C} be a category with equalizers. Let $F : \mathcal{C} \to \mathcal{D}$ be a functor which preserves equalizers and reflects isomorphisms. Prove that F is faithful.

Exercise 2. Recall that an object P of a category is *projective* if for every diagram

with e epi, there is an arrow $f: P \to A$ such that ef = g. A category is said to have enough projectives if for every object X there is an epimorphism $P \to X$ with P projective.

Let $\mathcal{C} \xrightarrow[G]{F} \mathcal{D}$ be an adjunction $(F \dashv G)$. Suppose that \mathcal{D} has enough projectives and that F preserves projectives. Prove that G preserves epimorphisms.

Exercise 3. Let \mathcal{C} be a category with finite coproducts. For a fixed object A of \mathcal{C} we consider the category A/\mathcal{C} : an object of A/\mathcal{C} is an arrow $A \to X$ in \mathcal{C} , and a morphism from $A \xrightarrow{f} X$ to $A \xrightarrow{g} Y$ is an arrow $X \xrightarrow{\alpha} Y$ in \mathcal{C} satisfying $\alpha f = g$.

- a) Consider the forgetful functor: $U : A/\mathcal{C} \to \mathcal{C}$ which sends $A \to X$ to X (and morphisms to themselves). Determine whether U has a left and/or a right adjoint.
- b) Is the functor U of part a) monadic? Motivate your answer.

Exercise 4. Let \mathcal{E} be a topos with subobject classifier $1 \xrightarrow{t} \Omega$. Consider the subobject $1 \xrightarrow{\langle t,t \rangle} \Omega \times \Omega$ of $\Omega \times \Omega$, and its classifying map $F : \Omega \times \Omega \to \Omega$.

a) Suppose A and B are subobjects of an object X, classified by maps $\phi, \psi : X \to \Omega$ respectively. What is the subobject of X classified by the composite map

$$X \xrightarrow{\langle \phi, \psi \rangle} \Omega \times \Omega \xrightarrow{F} \Omega ?$$

b) Let $P \xrightarrow{p} \Omega \times \Omega$ be the equalizer of F and the first projection. Given two subobjects A and B of an object X, classified by ϕ and ψ as before, show that the map $\langle \phi, \psi \rangle : X \to \Omega \times \Omega$ factors through P if and only if $A \leq B$.

Exercise 5. In a category with finite products \mathcal{E} , a *monoid object* is an object A together with maps $1 \xrightarrow{e} A$ and $A \times A \xrightarrow{m} A$ such that the diagrams

$$A \times A \qquad A \times A \times A \xrightarrow{(e, id_A)} A \xrightarrow{(id_A, e)} A \xrightarrow{(id_A, e)} A \xrightarrow{(A \times A)} A \xrightarrow{(A \times A)} A \xrightarrow{(id_A, e)} A \xrightarrow{(A \times A)} A \xrightarrow{($$

commute. We have a category $\operatorname{Mon}(\mathcal{E})$ of monoid objects (and monoid maps) in \mathcal{E} and a forgetful functor $\operatorname{Mon}(\mathcal{E}) \to \mathcal{E}$. The category \mathcal{E} is said to *have free monoids* if this forgetful functor has a left adjoint.

- a) Prove that for every small category C, $\operatorname{Set}^{\mathcal{C}^{\operatorname{op}}}$ has free monoids.
- b) Give an example of a small category C and a Grothendieck topology on C for which the free monoid construction of a) does not always yield a sheaf, even if we start out with a sheaf.