Exam Category Theory and Topos Theory

May 30, 2016; 10:00-13:00
With solutions and comments on the grading
THIS EXAM CONSISTS OF FIVE PROBLEMS. All Problems have EQUAL WEIGHT (10 POINTS); WHERE A PROBLEM CONSISTS OF MORE THAN ONE PART, IT IS INDICATED WHAT EACH PART IS WORTH

Exercise 1.Let \mathcal{C} be a locally small category. For an object X of \mathcal{C} we define the representable functor $R_{X}: \mathcal{C} \rightarrow$ Set by

$$
R_{X}(A)=\mathcal{C}(X, A)
$$

(and on arrows by composition)
a) (3 pts) Prove that the functor R_{X} preserves monomorphisms.
b) (4 pts) Assume that the category \mathcal{C} has all small coproducts. Show that R_{X} has a left adjoint.
c) (3 pts) Suppose $F: \mathcal{C} \rightarrow$ Set is a functor and $\mu: R_{X} \Rightarrow F$ a natural transformation. Show that μ is completely determined by the element $\mu_{X}\left(\mathrm{id}_{X}\right)$ of $F(X)$.

Exercise 2. For each of the functors given below, determine whether it preserves all limits, and whether it preserves all colimits. Give a short argument in each case.
a) (2 pts) The forgetful functor Ring \rightarrow Mon, which sends each ring to its underlying multiplicative monoid.
b) (3 pts) The domain functor: $\mathcal{C} / A \rightarrow \mathcal{C}$, where \mathcal{C} is a category with finite products, and A is a non-terminal object of \mathcal{C} (recall that an object of \mathcal{C} / A is an arrow with codomain A).
c) (3 pts) The forgetful functor from preorders to sets.
d) (2 pts) The "poset reflection functor" functor from preorders to posets: it sends a preorder P to the poset of isomorphism classes in P.

Exercise 3. In this exercise we work in a regular category \mathcal{C}. Suppose $f: X \rightarrow Y$ is an arrow in \mathcal{C}; we denote by $f^{*}: \operatorname{Sub}(Y) \rightarrow \operatorname{Sub}(X)$ the function on subobjects defined by pullback along f.
a) (5 pts) Prove, for $M \in \operatorname{Sub}(X)$ and $N \in \operatorname{Sub}(Y)$ the following identity:

$$
\exists_{f}\left(M \wedge f^{*} N\right)=\exists_{f}(M) \wedge N
$$

b) (5 pts) Now suppose that f is a regular epimorphism. Prove, for subobjects M, N of Y, that $f^{*} M \leq f^{*} N$ implies $M \leq N$.

Exercise 4. Let G be a group with more than 1 element, considered as a category. We consider the category $\operatorname{Set}^{G^{\text {op }}}$, which we may identify with the category of G-sets.
a) (3 pts) Show that in $\operatorname{Set}^{G^{\text {op }}}$, the terminal object is not projective. Recall that an object P is projective if, whenever we have an arrow $f: P \rightarrow Y$ and an epimorphism $g: X \rightarrow Y$, there is an arrow $h: P \rightarrow X$ such that $f=g h$.
b) (4 pts) Show that in $\operatorname{Set}^{G^{\text {op }}}$, the object $\{0,1\}$ with trivial G-action is a subobject classifier.
c) (3 pts) Show that Set ${ }^{G^{\mathrm{op}}}$ is Boolean. That is, every subobject lattice is a Boolean algebra.

Exercise 5. Let \mathcal{C} be a small category; we work in the category $\mathrm{Set}^{{ }^{\mathcal{C o p}}}$ of presheaves on \mathcal{C}.
a) (2 pts) Let U be a subobject of 1 . Show that U determines a sieve on \mathcal{C}, that is: a set of objects \mathcal{D} with the property that for any morphism $X \rightarrow Y$, if $Y \in \mathcal{D}$ then $X \in \mathcal{D}$.
b) (3 pts) We define, using the sieve \mathcal{D} on \mathcal{C} from part a), a morphism $c(U): \Omega \rightarrow \Omega$ in Set ${ }^{\mathcal{C}^{\mathrm{op}}}$ by putting, for a sieve R on an object C :

$$
c(U)_{C}(R)=R \cup\left\{f: C^{\prime} \rightarrow C \mid C^{\prime} \in \mathcal{D}\right\}
$$

Prove that $c(U)$ is a Lawvere-Tierney topology on $\mathrm{Set}^{{ }^{\mathcal{C}} \mathrm{P}}$.
c) (2 pts) Let F be a subpresheaf of a presheaf G on \mathcal{C}. Prove that F is dense for $c(U)$ if and only if for all $C \in \mathcal{C}_{0}$ and $x \in G(C)$ we have: $x \in F(C)$ or $C \in \mathcal{D}$.
d) (3 pts) Prove that the category of sheaves for $c(U)$ is equivalent to the category of presheaves on some subcategory of \mathcal{C}.

Solutions and comments on the grading

The exam seems to have been a bit tough, or in any case a lot of work for most students; no one handed in a perfect solution. In order to obtain a decent result I have decided to count, for each student, only his/her four best exercises.

Exercise 1

a) For an arrow $f: A \rightarrow B$, we have $R_{X}(f): \mathcal{C}(X, A) \rightarrow \mathcal{C}(X, B)$ sending $g: X \rightarrow A$ to the composition $f g$ in \mathcal{C}. If f is mono and $g, h: X \rightarrow A$ are elements of $\mathcal{C}(X, A)$, then clearly $f g=f h$ implies $g=h$, so $R_{X}(f)$ is injective, which means it is a monomorphism in Set.
b) An arrow $Y \rightarrow R_{X}(A)$ in Set is just a Y-indexed family of arrows $\left\{f_{y}\right.$: $X \rightarrow A \mid y \in Y\}$. Since \mathcal{C} has all small coproducts, this corresponds uniquely to an arrow from the Y-indexed coproduct of copies of X, $\sum_{y \in Y} X$, to A. For every function $\phi: Y \rightarrow Z$ we have an arrow

$$
\sum_{y \in Y} X \rightarrow \sum_{z \in Z} X
$$

which sends the y-th cofactor to the $\phi(y)$-th one. This determines a functor Set $\rightarrow \mathcal{C}$ which is left adjoint to R_{X}.
c) This is just the Yoneda lemma, and saying so would have given you 3 points. Concretely, if μ is as given and $f \in R_{X}(A)$, then $f=$ $R_{X}(f)\left(\mathrm{id}_{X}\right)$, so by naturality

$$
\mu_{A}(f)=\mu_{A}\left(R_{X}(f)\left(\mathrm{id}_{X}\right)\right)=F(f)\left(\mu_{X}\left(\mathrm{id}_{X}\right)\right)
$$

which proves the claim.

Exercise 2

a) This functor has a left adjoint, which sends each monoid M to the ring $\mathbb{Z}[M]$ of finite expressions $n_{1} m_{1}+\cdots n_{k} m_{k}$ (for $k \geq 0$) with $n_{i} \in \mathbb{Z}$ and $m_{i} \in M$. Therefore, it preserves all limits.
It does not preserve all colomits; for example, the initial object of Ring, the ring \mathbb{Z}, is not sent to the initial monoid (which is a one-element monoid).
b) This functor has a right adjoint, which sends an object X of \mathcal{C} to the projection $X \times A \rightarrow A$. It therefore preserves all colimits.

It does not preserve all limits; for example, the terminal object of \mathcal{C} / A is the identity on A, which is sent to A, which as stated is nonterminal in \mathcal{C} (if A were terminal, then the given functor would be an equivalence).
c) This functor has both adjoints: the left adjoint sends a set X to the discrete preorder on $X(x \leq y$ iff $x=y)$ and the right adjoint sends X to the indiscrete preorder on X ($x \leq y$ always). So it preserves all limits and all colimits.
d) The poset reflection functor is, as is easily seen, left adjoint to the inclusion of Posets into Preorders; it preserves all colimits. It does not preserve all limits; for example, look at equalizers. Consider the two maps $f, g: 1 \rightarrow A$ where A is the indiscrete preorder on a two-element set. The equalizer is the empty set (you may apply c) here). However, upon poset reflection the two maps become equal, and the equalizer is 1 itself.
Some students (even among the very best) remarked that this functor is "an equivalence of categories". Although this is quite erroneous, it is, in the heat of the fight, a plausible error to make; and I have therefore decided to award you 1.5 pts if you wrote this down. After all, every preorder is, as a category, equivalent to its poset reflection; however, equivalence is not isomorphism, and in any case pseudo-inverses need choice and cannot be natural.

Exercise 3

a) Let us abuse notation and write the same symbol for a subobject and the domain of a representing monomorphism. So we have subobjects $M \xrightarrow{m} X$ and $N \xrightarrow{n} Y$; we have the regular epi-mono factorization $M \rightarrow \exists_{f} M \rightarrow Y$, and pullback diagrams

Now the compositions $M \wedge f^{*} N \rightarrow f^{*} N \rightarrow N \rightarrow Y$ and $M \wedge f^{*} N \rightarrow$ $M \rightarrow \exists_{f} M \rightarrow Y$ are clearly equal, so by the third pullback diagram we
have a unique arrow $g: M \wedge f^{*} N \rightarrow\left(\exists_{f} M\right) \wedge N$, making the diagrams

commute.
Consider now the diagrams

The outer squares of both are equal, and the right-hand diagram is a composite of two pullbacks; therefore the left hand outer square is a pullback. Since also the left hand lower square is a pullback, the left-hand upper square must be a pullback. That means that g, being pullback of the regular epi $M \rightarrow \exists_{f} M$, is a regular epi; but now we see that

$$
M \wedge f^{*} N \xrightarrow{g}\left(\exists_{f} M\right) \wedge N \longrightarrow Y
$$

is a regular epi-mono factorization. This establishes that

$$
\exists_{f}\left(M \wedge f^{*} N\right)=\left(\exists_{f} M\right) \wedge N
$$

as desired.
One inequality was easy to prove: we have $M \wedge f^{*} N \leq M$ and $M \wedge$ $f^{*} N \leq f^{*} N$, so since \exists_{f} is order-preserving we have $\exists_{f}\left(M \wedge f^{*} N\right) \leq$ $\left(\exists_{f} M\right) \wedge \exists_{f} f^{*} N$; now $\exists_{f} f^{*} N \leq N$ by the adjunction $\exists_{f} \dashv f^{*}$, hence $\exists_{f}\left(M \wedge f^{*} N\right) \leq\left(\exists_{f} M\right) \wedge N$. If you had only this, you got 3 points.
You got 3.5 points if you proved the equality assuming that $\operatorname{Sub}(X)$ and $\operatorname{Sub}(Y)$ were Heyting algebras and f^{*} preserved the Heyting structure; although of course, we cannot in general assume this in a regular category.
b) Suppose $f: X \rightarrow Y$ is regular epi. Now for any subobject N of Y, we have a pullback

so the map $f^{*} N \rightarrow N$ is regular epi, and hence the regular epi part of the composite map $f^{*} N \rightarrow Y$. Therefore $N=\exists_{f} f^{*} N$ for all subobjects N of Y; from this (and the fact that \exists_{f} is order-preserving) the required implication follows at once.

Exercise 4

a) The presheaf category $\operatorname{Set}^{G^{\text {op }}}$ is isomorphic to the category G-Set of sets X together with a right G-action $X \times G \rightarrow X$, and G-equivariant functions (functions commuting with the G-action). Modulo this isomorphism, the fact that in any presheaf category, limits and colimits are calculated point-wise, translates a.o. into the statements that the terminal object is a one-element set (with unique G-action); that epis are surjective functions and monos are injective functions. Furthermore, the one representable presheaf corresponds to the object G, with G-action given by multiplication in G.

If 1 were projective, we would have a section for the epi $G \rightarrow 1$. However, such a section must send the unique element of 1 to an element of G which is invariant under the action; i.e., an element $g \in G$ for which $g h=g$ for all $h \in G$. This is clearly impossible if G has more than one element.
b) A subobject of a G-set X is just a subset $A \subset X$ which is closed under the action. Since G is a group, this means that then also $X-A$ is closed under the G-action. We have therefore a classifying map $\chi_{A}: X \rightarrow\{0,1\}$ such that $\chi_{A}(x)=0$ iff $x \in A$; i.e. a map such that

is a pullback (if $t(\star)=0$), and χ_{A} is clearly unique with this property. Note, that by our remarks above, χ_{A} is a morphism of G-sets.
c) We know that in any topos, $\operatorname{Sub}(X)$ is a Heyting algebra, so it only remains to see that complements exist in $\operatorname{Sub}(X)$. Basically, the argument is the same as for b); observe that for a subobject A of $X, X-A$ is a complement (again using that limits and colimits are calculated point-wise).

Exercise 5.

a) In Set ${ }^{\mathcal{C}^{\text {op }}}, 1$ is the presheaf with $1(C)=\{*\}$ for all C. If U is a subobject of 1 , we may regard U as a subpresheaf of 1 , and U determines the set of objects

$$
\mathcal{D}=\left\{C \in \mathcal{C}_{0} \mid * \in U(C)\right\}
$$

Clearly, if $C \in \mathcal{D}$ and $f: C^{\prime} \rightarrow C$ then $C^{\prime} \in \mathcal{D}$.
b) Let $\Phi_{C}=\left\{f: C^{\prime} \rightarrow C \mid C^{\prime} \in \mathcal{D}\right\}$, so $c(U)_{C}(R)=R \cup \Phi_{C}$. The properties $R \subseteq c(U)_{C}(R), c(U)_{C}(R \cap S)=c(U)_{C}(R) \cap c(U)_{C}(S)$ and $c(U)_{C}\left(c(U)_{C}(R)\right)=c(U)_{C}(R)$ all follow trivially from this.
c) A subpresheaf F of G is dense if and only if for each object C of \mathcal{C} and every $x \in G(C)$, we have that $c(U)_{C}\left(\left(\chi_{F}\right)_{C}(x)\right)$ is the maximal sieve on C, where $\chi_{F}(x)$ is the sieve on C consisting of precisely those $f: C^{\prime} \rightarrow C$ for which $G(f)(x) \in F\left(C^{\prime}\right)$. So, F is dense in G if and only if for each C and x, the arrow id_{C} is an element of $\left(\chi_{F}\right)_{C}(x) \cap \Phi_{C}$; but $\operatorname{id}_{C} \in\left(\chi_{F}\right)_{C}(x)$ means that $x \in F(C)$ and $\operatorname{id}_{C} \in \Phi_{C}$ means that $C \in \mathcal{D}$, so we are done.
d) We use the property which characterizes sheaves w.r.t. dense inclusions: a presheaf X is a sheaf if and only if for every dense inclusion $F \subseteq G$, every map $F \rightarrow X$ has a unique extension to a map $G \rightarrow X$.
We claim that X is a sheaf for $c(U)$ if and only if for every object $C \in \mathcal{D}, X(C)$ is a singleton set.

Clearly, the condition above is sufficient: suppose that for every object $C \in \mathcal{D}, X(C)$ is a singleton set. Let $F \subseteq G$ be dense, and $\mu: F \rightarrow X$ a map. Since for $C \in \mathcal{D}$ there is nothing to choose (by the condition) and for $C \notin \mathcal{D}, F(C)=G(C)$, we have a clearly unique extension of μ. So X is a sheaf.

Conversely, suppose X is a sheaf. Let us write \mathcal{D} also for the full subcategory of \mathcal{C} on the set of objects \mathcal{D}, and write $X \upharpoonright \mathcal{D}$ for the restriction of the functor X to $\mathcal{D}^{\text {op }}$. Let Y be any presheaf on \mathcal{D} and \hat{Y} be the
presheaf on \mathcal{C} defined by:

$$
\hat{Y}(C)=\left\{\begin{array}{cl}
Y(C) & \text { if } C \in \mathcal{D} \\
\emptyset & \text { otherwise }
\end{array}\right.
$$

Let $\mathbf{0}$ be the empty presheaf on \mathcal{C}. Now $\mathbf{0} \subseteq \hat{Y}$ is dense, so the unique map $\mathbf{0} \rightarrow X$ has a unique extension $\hat{Y} \rightarrow X$; in other words, there is, for any presheaf Y on \mathcal{D} exactly one arrow from Y to $X \upharpoonright \mathcal{D}$. This means $X \upharpoonright \mathcal{D}$ is terminal in $\operatorname{Set}^{\mathcal{D}^{\text {op }}}$, so the given condition holds.
We now see that the category of sheaves for $c(U)$ is equivalent to the category of presheaves on \mathcal{E}, where \mathcal{E} is the full subcategory of \mathcal{C} on the objects not in \mathcal{D}.

