Exam Category Theory and Topos Theory

June 18, 2018; 10:00-13:00
With solutions

Exercise 1.Let \mathcal{C} be a locally small category. For an object X of \mathcal{C} we define the representable functor $R_{X}: \mathcal{C} \rightarrow$ Set by

$$
R_{X}(A)=\mathcal{C}(X, A)
$$

(and on arrows by composition)
a) (3 pts) Prove that the functor R_{X} preserves monomorphisms.
b) (4 pts) Assume that the category \mathcal{C} has all small coproducts. Show that R_{X} has a left adjoint.
c) (3 pts) Suppose $F: \mathcal{C} \rightarrow$ Set is a functor and $\mu: R_{X} \Rightarrow F$ a natural transformation. Show that μ is completely determined by the element $\mu_{X}\left(\mathrm{id}_{X}\right)$ of $F(X)$.

Solution:

a) Suppose $f: A \rightarrow B$ is mono in \mathcal{C}; we have to prove that $R_{X}(f)$: $\mathcal{C}(X, A) \rightarrow \mathcal{C}(X, B)$ is injective. So suppose $g_{1}, g_{2}: X \rightarrow A$ are elements of $\mathcal{C}(X, A)$ such that $R_{X}(f)\left(g_{1}\right)=R_{X}(f)\left(g_{2}\right)$. That means: $f g_{1}=f g_{2}$. Since f is mono, $g_{1}=g_{2}$. So indeed, $R_{X}(f)$ is injective, that is: mono in Set.
b) For a set B, define $L_{X}(B)$ to be the coproduct of B many copies of X in \mathcal{C}, i.e. $\coprod_{b \in B} X$. We have

$$
\mathcal{C}\left(L_{X}(B), A\right) \simeq \mathcal{C}\left(\coprod_{b \in B} X, A\right) \simeq \prod_{b \in B} \mathcal{C}(X, A) \simeq \operatorname{Set}(B, \mathcal{C}(X, A))
$$

which isomorphisms are all natural; so this establishes the adjunction.
c) This is just the Yoneda lemma.

Exercise 2. Let $\mathcal{C} \underset{G}{\stackrel{F}{\leftrightarrows}} \mathcal{D}$ be an adjunction, with $F \dashv G$. We assume furthermore that \mathcal{C} and \mathcal{D} are regular categories, that the counit ε of the adjunction is split mono, and that the functor G preserves regular epimorphisms.

Let $G(X) \xrightarrow{e} Y \xrightarrow{m} G\left(X^{\prime}\right)$ be a diagram in \mathcal{D}, with e regular epi and m mono. Show that Y is isomorphic to an object in the image of the functor G.

Solution: The assumption that ε is split mono implies (in fact, is equivalent to) the statement that G is full. To prove this: assume $f: G(X) \rightarrow G\left(X^{\prime}\right)$ is an arrow in \mathcal{D}. Let $r_{X}: X \rightarrow F G(X)$ be a retraction for ε_{X}. Let $\tilde{f}: F G(X) \rightarrow X$ be the transpose of f under the adjunction $F \dashv G$. Note, that \tilde{f} is equal to the composite

$$
F G(X) \xrightarrow{F(f)} F G\left(X^{\prime}\right) \xrightarrow{\varepsilon_{X^{\prime}}} X^{\prime}
$$

We consider the arrow $g=\tilde{f} r_{X}: X \rightarrow X^{\prime}$ in \mathcal{C}. The transpose of $G(g)$ is the map

$$
F G(X) \xrightarrow{F G\left(r_{X}\right)} F G F G(X) \xrightarrow{F G(\tilde{f})} F G\left(X^{\prime}\right) \xrightarrow{\varepsilon_{X^{\prime}}} X^{\prime}
$$

which, by naturality of ε, is equal to the composite $\tilde{f} r_{X} \varepsilon_{X}$, which is equal to \tilde{f}. Since $G(g)$ and f have the same transpose, they are equal. We conclude that G is full.

Since G is full, choose $h: X \rightarrow X^{\prime}$ in \mathcal{C} such that $G(h)=m e$. Let, by regularity of $\mathcal{C}, X \xrightarrow{e^{\prime}} Z \xrightarrow{m^{\prime}} X^{\prime}$ be a regular epi-mono factorization of h. Now G preserves regular epis by assumption and monos because it is a right adjoint (any limit-preserving functor preserves monos); therefore we have a regular epi-mono factorization

$$
G(X) \xrightarrow{G\left(e^{\prime}\right)} G(Z) \xrightarrow{G\left(m^{\prime}\right)} G\left(X^{\prime}\right)
$$

of $G(h)=m e$. By uniqueness of regular epi-mono factorizations in \mathcal{D}, we have that $Y \simeq G(Z)$, as desired.

Exercise 3. Let \mathcal{C} be a cartesian closed category and $h: A \rightarrow B$ an epimorphism in \mathcal{C}. Prove that for every object X of \mathcal{C}, the arrow X^{h} : $X^{B} \rightarrow X^{A}$ is mono.
Solution: Suppose $a, b: W \rightarrow X^{B}$ is a parallel pair satisfying $X^{h} a=X^{h} b$. To prove: $a=b$. We look at the following commutative diagram:

from which we learn that the transpose of $X^{h} a$ is the composite

$$
\operatorname{ev}\left(a \times \operatorname{id}_{B}\right)\left(\mathrm{id}_{W} \times h\right)
$$

Since the transposes of $X^{h} a$ and $X^{h} b$ are assumed equal, we see that

$$
\operatorname{ev}\left(a \times \operatorname{id}_{B}\right)\left(\mathrm{id}_{W} \times h\right)=\operatorname{ev}\left(b \times \operatorname{id}_{B}\right)\left(\operatorname{id}_{W} \times h\right)
$$

Now the arrow $\operatorname{id}_{W} \times h$ is epi, because the functor $W \times(-)$, having a right adjoint, preserves epis. Therefore, we get that $\operatorname{ev}\left(a \times \operatorname{id}_{B}\right)=\operatorname{ev}\left(b \times \operatorname{id}_{B}\right)$; that is, the transposes of a and b are equal. It follows that $a=b$, as was to be proved.
A slicker proof is available. Given X, let $G: \mathcal{C} \rightarrow \mathcal{C}^{\mathrm{op}}$ be the functor $X^{(-)}$. Let $\bar{G}: \mathcal{C}^{\mathrm{op}} \rightarrow \mathcal{C}$ be the opposite functor. Since there are natural isomorphisms

$$
\mathcal{C}(Y, \bar{G}(W)) \simeq \mathcal{C}\left(Y, X^{W}\right) \simeq \mathcal{C}\left(W, X^{Y}\right) \simeq \mathcal{C}^{\mathrm{op}}(G(Y), W)
$$

we see that $G \dashv \bar{G}$. Therefore \bar{G} preserves monos and since h is epi in \mathcal{C} hence mono in $\mathcal{C}^{\text {op }}, X^{h}=\bar{G}(h)$ is mono in \mathcal{C}.
Exercise 4. In a poset (P, \leq), a subset $U \subseteq P$ is called downwards closed if for every $x \in U$ and $y \leq x$ we have $y \in U$. Let $\mathcal{D}(P)$ be the set of all downwards closed subsets of P, ordered by inclusion.
a) (4 pts) Show that the operation \mathcal{D} has the structure of a monad on Pos, with unit $\eta_{P}: P \rightarrow \mathcal{D}(P)$ which sends $x \in P$ to $\downarrow x=\{y \in P \mid y \leq$ $x\} \in \mathcal{D}(P)$, and union as multiplication.
b) (4 pts) Suppose $h: \mathcal{D}(P) \rightarrow P$ is a \mathcal{D}-algebra. Show that h is left adjoint to the unit $\eta_{P}: P \rightarrow \mathcal{D}(P)$, both considered as maps between posets. Conclude that any poset P has at most one \mathcal{D}-algebra structure.
c) (2 pts +1 bonus point) Characterize the posets P which have a \mathcal{D} algebra structure.

Solution:

a) First, we should define \mathcal{D} as a functor. On morphisms $f: P \rightarrow Q$, define for a downwards closed subset U of P, its image under $\mathcal{D}(f)$ as the downwards closure of $\{f(x) \mid x \in U\}$, i.e. the set

$$
\{y \in Q \mid \text { for some } x \in U, y \leq f(x)\}
$$

since simply the pointwise image of U under f fails to be downwards closed in general. One easily checks that with this definition of $\mathcal{D}(f)$, we have a functor. That \mathcal{D} is a monad, is very similar to the proof for the covariant powerset monad; I skip it here.
b) Suppose $h: \mathcal{D}(P) \rightarrow P$ is a \mathcal{D}-algebra. Since h is order-preserving we see that for $x \in U \in \mathcal{D}(P)$ we have $\downarrow x \subseteq U$, hence $x=h(\downarrow x) \leq h(U)$, so $U \subseteq \downarrow(h(U))$. From this we see that $h(U) \leq x$ implies $\downarrow(h(U)) \subseteq \downarrow x$ so $U \subseteq \downarrow x$; conversely if $U \subseteq \downarrow x$ then $h(U) \leq h(\downarrow x)=x$. We conclude that $h(U) \leq x$ if and only if $U \subseteq \downarrow x=\eta_{P}(x)$; so h is left adjoint to the unit. We see that up to isomorphism, there can be at most one \mathcal{D} algebra structure on P. But in a poset, isomorphism means equality. So there is at most one algebra structure.
c) By the adjunction shown in part b), we see that $U \subseteq \eta_{P}(h(U))=$ $\downarrow h(U)$, so $h(U)$ is an upper bound for U, and it is the least upper bound. Since in a poset, any subset X and its downwards closure have the same upper bounds, we see that a poset P has a \mathcal{D}-algebra structure if and only if every subset of P has a least upper bound.

Exercise 5. Recall that in any category, an object M is called injective if every diagram

with m mono, can be completed to a commutative diagram

Recall also that for objects X and Y, X is called a retract of Y if there is a diagram $X \xrightarrow{i} Y \xrightarrow{r} X$ such that $r i=\mathrm{id}_{X}$.
a) (3 pts) Suppose \mathcal{E} is a topos with subobject classifier $1 \xrightarrow{t} \Omega$. Show that Ω is injective.
b) (2 pts) Show that in any cartesian closed category the following holds: if M is injective, then M^{X} is injective, for any object X.
c) (3 pts) Show that in a topos, every object X admits a mono $X \rightarrow \Omega^{X}$.
d) (2 pts) Prove that in a topos, an object is injective if and only if it is a retract of an object of the form Ω^{Y}.

Solution:

a) Given a mono $m: A \rightarrow B$ and a map $f: A \rightarrow \Omega$, let $n: A^{\prime} \rightarrow A$ represent the subobject of A classified by f. Now $m n: A^{\prime} \rightarrow B$ is mono; let $g: B \rightarrow \Omega$ classify this mono. In the following diagram:

every square is a pullback. So the whole square is a pullback; hence the arrow $g m$ classifies $n: A^{\prime} \rightarrow A$, which by assumption was classified by f. Therefore $f=g m$, and Ω is injective.
b) Given a mono $m: A \rightarrow B$ and a map $f: A \rightarrow M^{X}$, we consider the transpose $\tilde{f}: A \times X \rightarrow M$ and the mono $m \times \operatorname{id}_{X}: A \times X \rightarrow B \times X$. By injectivity of M we obtain an arrow $\tilde{g}: B \times X \rightarrow M$ making the triangle

commute. Taking the transpose of this diagram gives a map $g: B \rightarrow$ M^{X} such that $g m=f$, and M^{X} is injective.
c) Consider the subobject X of $X \times X$ via the diagonal embedding. Let $d: X \times X \rightarrow \Omega$ classify this; and let $\{\cdot\}: X \rightarrow \Omega^{X}$ be the exponential transpose of d. We claim that this map is mono. To see this, consider that for an arrow $f: Y \rightarrow X$, the composite $Y \xrightarrow{f} X \xrightarrow{\{\cdot\}} \Omega^{X}$ transposes to the composite

$$
Y \times X \xrightarrow{f \times \mathrm{id}_{X}} X \times X \xrightarrow{d} \Omega
$$

which classifies the graph of f as subobject of $Y \times X$. Therefore if $\{\cdot\}$ coequalizes two maps f and g from Y to X then the graphs of f and g are equal, hence $f=g$.
d) For the "only if" part, suppose M is injective. Considering the mono $\{\cdot\}: M \rightarrow \Omega^{M}$ and the identity $M \rightarrow M$ we obtain a map $r: \Omega^{M} \rightarrow M$ which is a retraction for $\{\cdot\}$. So M is a retract of Ω^{M}.
Conversely, first one proves that every retract of an injective object is injective. Then one applies b) and c) to see that every retract of Ω^{Y} is injective.

