
Exam Category Theory and Topos Theory
June 18, 2018; 10:00–13:00

With solutions

Exercise 1.Let C be a locally small category. For an object X of C we
define the representable functor RX : C → Set by

RX(A) = C(X,A)

(and on arrows by composition)

a) (3 pts) Prove that the functor RX preserves monomorphisms.

b) (4 pts) Assume that the category C has all small coproducts. Show
that RX has a left adjoint.

c) (3 pts) Suppose F : C → Set is a functor and µ : RX ⇒ F a natural
transformation. Show that µ is completely determined by the element
µX(idX) of F (X).

Solution:

a) Suppose f : A → B is mono in C; we have to prove that RX(f) :
C(X,A) → C(X,B) is injective. So suppose g1, g2 : X → A are el-
ements of C(X,A) such that RX(f)(g1) = RX(f)(g2). That means:
fg1 = fg2. Since f is mono, g1 = g2. So indeed, RX(f) is injective,
that is: mono in Set.

b) For a set B, define LX(B) to be the coproduct of B many copies of X
in C, i.e.

∐
b∈BX. We have

C(LX(B), A) ' C(
∐
b∈B

X,A) '
∏
b∈B
C(X,A) ' Set(B, C(X,A))

which isomorphisms are all natural; so this establishes the adjunction.

c) This is just the Yoneda lemma.

Exercise 2. Let C
G
// D

Foo be an adjunction, with F a G. We assume

furthermore that C and D are regular categories, that the counit ε of the
adjunction is split mono, and that the functor G preserves regular epimor-
phisms.
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Let G(X)
e // Y

m // G(X ′) be a diagram in D, with e regular epi and

m mono. Show that Y is isomorphic to an object in the image of the functor
G.

Solution: The assumption that ε is split mono implies (in fact, is equivalent
to) the statement that G is full. To prove this: assume f : G(X) → G(X ′)
is an arrow in D. Let rX : X → FG(X) be a retraction for εX . Let
f̃ : FG(X) → X be the transpose of f under the adjunction F a G. Note,
that f̃ is equal to the composite

FG(X)
F (f)

// FG(X ′)
εX′
// X ′

We consider the arrow g = f̃ rX : X → X ′ in C. The transpose of G(g) is
the map

FG(X)
FG(rX)

// FGFG(X)
FG(f̃)

// FG(X ′)
εX′
// X ′

which, by naturality of ε, is equal to the composite f̃ rXεX , which is equal to
f̃ . Since G(g) and f have the same transpose, they are equal. We conclude
that G is full.

Since G is full, choose h : X → X ′ in C such that G(h) = me. Let,

by regularity of C, X e′→ Z
m′
→ X ′ be a regular epi-mono factorization of h.

Now G preserves regular epis by assumption and monos because it is a right
adjoint (any limit-preserving functor preserves monos); therefore we have a
regular epi-mono factorization

G(X)
G(e′)→ G(Z)

G(m′)→ G(X ′)

of G(h) = me. By uniqueness of regular epi-mono factorizations in D, we
have that Y ' G(Z), as desired.

Exercise 3. Let C be a cartesian closed category and h : A → B an
epimorphism in C. Prove that for every object X of C, the arrow Xh :
XB → XA is mono.

Solution: Suppose a, b : W → XB is a parallel pair satisfying Xha = Xhb.
To prove: a = b. We look at the following commutative diagram:

W ×A a×idA//

idW×h %%LL
LLL

LLL
LL

XB ×A
id

XB×h
// XB ×B ev // X

W ×B
a×idB

88qqqqqqqqqqq
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from which we learn that the transpose of Xha is the composite

ev(a× idB)(idW × h).

Since the transposes of Xha and Xhb are assumed equal, we see that

ev(a× idB)(idW × h) = ev(b× idB)(idW × h)

Now the arrow idW × h is epi, because the functor W × (−), having a right
adjoint, preserves epis. Therefore, we get that ev(a × idB) = ev(b × idB);
that is, the transposes of a and b are equal. It follows that a = b, as was to
be proved.

A slicker proof is available. Given X, let G : C → Cop be the functor
X(−). Let Ḡ : Cop → C be the opposite functor. Since there are natural
isomorphisms

C(Y, Ḡ(W )) ' C(Y,XW ) ' C(W,XY ) ' Cop(G(Y ),W )

we see that G a Ḡ. Therefore Ḡ preserves monos and since h is epi in C
hence mono in Cop, Xh = Ḡ(h) is mono in C.

Exercise 4. In a poset (P,≤), a subset U ⊆ P is called downwards closed
if for every x ∈ U and y ≤ x we have y ∈ U . Let D(P ) be the set of all
downwards closed subsets of P , ordered by inclusion.

a) (4 pts) Show that the operation D has the structure of a monad on
Pos, with unit ηP : P → D(P ) which sends x ∈ P to ↓x = {y ∈ P | y ≤
x} ∈ D(P ), and union as multiplication.

b) (4 pts) Suppose h : D(P ) → P is a D-algebra. Show that h is left
adjoint to the unit ηP : P → D(P ), both considered as maps be-
tween posets. Conclude that any poset P has at most one D-algebra
structure.

c) (2 pts + 1 bonus point) Characterize the posets P which have a D-
algebra structure.

Solution:

a) First, we should define D as a functor. On morphisms f : P → Q,
define for a downwards closed subset U of P , its image under D(f) as
the downwards closure of {f(x) |x ∈ U}, i.e. the set

{y ∈ Q | for some x ∈ U , y ≤ f(x)}
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since simply the pointwise image of U under f fails to be downwards
closed in general. One easily checks that with this definition of D(f),
we have a functor. That D is a monad, is very similar to the proof for
the covariant powerset monad; I skip it here.

b) Suppose h : D(P )→ P is a D-algebra. Since h is order-preserving we
see that for x ∈ U ∈ D(P ) we have ↓x ⊆ U , hence x = h(↓x) ≤ h(U),
so U ⊆ ↓(h(U)). From this we see that h(U) ≤ x implies ↓(h(U)) ⊆ ↓x
so U ⊆ ↓x; conversely if U ⊆ ↓x then h(U) ≤ h(↓x) = x. We conclude
that h(U) ≤ x if and only if U ⊆ ↓x = ηP (x); so h is left adjoint to
the unit. We see that up to isomorphism, there can be at most one D-
algebra structure on P . But in a poset, isomorphism means equality.
So there is at most one algebra structure.

c) By the adjunction shown in part b), we see that U ⊆ ηP (h(U)) =
↓h(U), so h(U) is an upper bound for U , and it is the least upper
bound. Since in a poset, any subset X and its downwards closure
have the same upper bounds, we see that a poset P has a D-algebra
structure if and only if every subset of P has a least upper bound.

Exercise 5. Recall that in any category, an object M is called injective if
every diagram

B

A

m

OO

f
//M

with m mono, can be completed to a commutative diagram

B
g

!!B
BB

BB
BB

B

A

m

OO

f
//M.

Recall also that for objects X and Y , X is called a retract of Y if there is a
diagram X

i // Y
r // X such that ri = idX .

a) (3 pts) Suppose E is a topos with subobject classifier 1
t→ Ω. Show

that Ω is injective.

b) (2 pts) Show that in any cartesian closed category the following holds:
if M is injective, then MX is injective, for any object X.
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c) (3 pts) Show that in a topos, every object X admits a mono X → ΩX .

d) (2 pts) Prove that in a topos, an object is injective if and only if it is
a retract of an object of the form ΩY .

Solution:

a) Given a mono m : A → B and a map f : A → Ω, let n : A′ → A
represent the subobject of A classified by f . Now mn : A′ → B is
mono; let g : B → Ω classify this mono. In the following diagram:

A
m // B

g
// Ω

A

id

OO

id // A

m

OO

A′

n

OO

id
// A′ //

n

OO

1

t

OO

every square is a pullback. So the whole square is a pullback; hence
the arrow gm classifies n : A′ → A, which by assumption was classified
by f . Therefore f = gm, and Ω is injective.

b) Given a mono m : A → B and a map f : A → MX , we consider the
transpose f̃ : A×X →M and the mono m× idX : A×X → B ×X.
By injectivity of M we obtain an arrow g̃ : B ×X → M making the
triangle

B ×X
g̃

##G
GG

GG
GG

GG

A×X

m×idX

OO

f̃

//M

commute. Taking the transpose of this diagram gives a map g : B →
MX such that gm = f , and MX is injective.

c) Consider the subobject X of X ×X via the diagonal embedding. Let
d : X ×X → Ω classify this; and let {·} : X → ΩX be the exponential
transpose of d. We claim that this map is mono. To see this, consider

that for an arrow f : Y → X, the composite Y
f→ X

{·}→ ΩX transposes
to the composite

Y ×X f×idX// X ×X d // Ω
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which classifies the graph of f as subobject of Y ×X. Therefore if {·}
coequalizes two maps f and g from Y to X then the graphs of f and
g are equal, hence f = g.

d) For the “only if” part, suppose M is injective. Considering the mono
{·} : M → ΩM and the identity M →M we obtain a map r : ΩM →M
which is a retraction for {·}. So M is a retract of ΩM .

Conversely, first one proves that every retract of an injective object is
injective. Then one applies b) and c) to see that every retract of ΩY

is injective.
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