Exam Topos Theory
January 21, 2019; 10:00-13:00
With solutions

Exercise 1. Let £ be a topos, and j : @ — ) a Lawvere-Tierney topology
in £. By Sh;(€) we denote the category of j-sheaves.

a) (5) Let X be a j-sheaf, and let X ¥ X be a partial map classifier in
Sh;(&). Show that for any diagram

M-"=Y
/|
X
in £ with m mono, there exists an arrow f : ¥ — X such that the
square
M-y
() fl lf
X— X
vx
commutes.

b) (5) Now suppose the mono m represents a j-closed subobject of Y.
Show that there is a wnique f : Y — X making the square (x) a
pullback.

Solution: a): consider the sheafification functor L and the natural trans-
formation 7 : id = L. We know that the functor L preserves finite limits; in
particular it preserves monos. Since X is a j-sheaf, the partial map diagram
transposes to a diagram

NS

L(M)
dl
X

which is a partial map L(Y) — X in Sh;(£). By the property of the partial

map classifier X, we have a unique arrow f : LY)— X making the diagram
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a pullback. If we compose this with the naturality square

M-—" Yy

|

LOD) 1 L(Y)

and define f to be the composite fny, we have our commuting square.

b): here one has to see that the map M 3 Y is j-closed precisely when
the naturality square is a pullback. This is so because the universal closure
operation corresponding to the Lawvere-Tierney topology j sends a mono
m : M — Y to the pullback of L(m) along ny. Clearly now, if m is j-closed
then the construction given for part a) yields a pullback square.

For uniqueness, suppose the square (%) is a pullback. Since X 2 X is a
diagram of sheaves, (x) transposes to a diagram

(¥)
l

Y]

which, modulo the isomorphisms X ~ L(X) and X ~ L(X ), is just the
L-image of the diagram (%), and hence a pullback; we see that f represents
the partial map f in Sh;(&), and is therefore uniquely determined by m and

f. Hence its transpose f is uniquely determined by m and f.

Exercise 2. Again, £ is a topos and j is a Lawvere-Tierney topology in €.
Let Sep; (&) be the full subcategory of £ on the j-separated objects, and let
M : € — Sep;(€) be left adjoint to the inclusion functor Sep;(€) — &.

a) (4) Prove that if X is j-separated then so is XV, for any Y.
b) (4) Prove that the functor M preserves finite products.
c) (2) Does M preserve equalizers in general? Motivate your answer.

Solution: a): the simplest was to remark that we know this for sheaves: if X
is a sheaf then XY is a sheaf. Now if X is j-separated, X is a subobject of a
sheaf, say we have a mono m : X — Z with Z a sheaf. Then mY : X¥ — 7V
is a monomorphism (since the functor (—)¥, being a right adjoint, preserves
monos) of XV into the sheaf ZY; so XY is separated.



Alternatively, suppose M’ =% M is j-dense and M’ 5 XY isa map. By
the exponential adjunction, there is a natural bijection between commutative
triangles

M " M M xy ™9 sy
fl / and ~J{
g f g

XY X
and, by stability of the closure operation, the map m X id is dense if m is.
Since X is separated, there is at most one § making the right hand triangle

commute. So there is at most one g making the left hand triangle commute;
that is, XY is separated.

b): this is similar to the proof for L in the lecture notes. For the binary
case one proves, for arbitrary separated objects X, that there is a natural
bijective correspondence Sep;(MY x MZ, X) ~ Sep;(M(Y x Z), X), and
applies the Yoneda lemma. It is trivial that M (1) ~ 1.

c): you got full points if you remarked that if M preserved equalizers then
M would preserve all finite limits, and therefore would define a subtopos of
E. Not every category of separated objects is itself a topos. For a simple
example, take the poset 2, the linear order with 2 elements, and consider the
——-topology on Set?. Note that objects of this category are arrows in Set;
the category of —=—-separated objects is the full subcategory on the injective
functions. This is not a topos.

Exercise 3. Let P be the poset of finite 01-sequences ordered by extension:
o < 7 if and only if o is an initial segment of 7. We consider the toposes
Set /P (the slice topos, where P is regarded as just a set) and ]3, the category
of presheaves on the poset P.

Show that there exist both a surjection and an embedding from Set /P
to P.

Solution: consider P as a category and let Py be the discrete category on
the objects of P. It is an easy observation that Set/P is equivalent to Pg;s.

We know from the lectures that a functor F': C — D induces a geometric
morphism F': C — D which is a surjection if F' is surjective on objects, and
an embedding if F' is full and faithful.

So it suffices to find functors F, G : Pgs — P such that F' is surjective
on objects and G is full and faithful. Note that any map from P to itself
gives a functor Py — P.

For F we can take the identity function; this is surjective on objects
(this induces the geometric morphism that most of you found). For G, we



need a function from P to P such that different elements p and g are sent to
incomparable elements G(p), G(q). Now P is a countably infinite set; choose
an enumeration (ep)neny of P. Define G such that G(e,) is the sequence
0---01. Then G is a full and faithful functor, and induces an embedding

n

Set/P ~ Fdi\s - P.

Exercise 4. Recall that in a topos £ an object X is internally projective
if the functor (—)* preserves epimorphisms; £ is said to satisfy the internal
aziom of choice (IC) if every object of £ is internally projective.

Show that the following two assertions are equivalent:

i) & satisfies IC and 1 is projective in £.
ii) Every object of £ is projective.

Solution: i)=-ii) is most elegantly proven by observing that the functor
E(X,—) is isomorphic to £(1,(—)¥), which is the composition of (—)¥ :
E — & and £(1,—) : &€ — Set. The first of these preserves epis because
X is internally projective, and the second one does because 1 is projective.
Hence £(X, —) preserves epis; that is, X is projective.

ii)=1): Let f: A — B be epi. Then f is split epi by ii), and split epis
are preserved by any functor, in particular by the functor (—)X. So X is
internally projective.



