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Abstract

This paper proposes a structured variant in ASPIC+ of the
notion of expansions of abstract argumentation frameworks.
The purpose of this is threefold: studying what it takes to in-
stantiate the abstract notion of expansions with a structured
account of argumentation, studying to which extent assump-
tions implicitly made at the abstract level hold for structured
instantiations and studying which potentially interesting dis-
tinctions can be made at the structured level that cannot be
expressed at the abstract level.

1 Introduction
There is much abstract work on argumentation dynamics,
such as work on modifying abstract (Dung 1995) or bipolar
(Cayrol and Lagasquie-Schiex 2009) argumentation frame-
works by adding or deleting (sets of) arguments, attacks or
supports. See Doutre and Mailly (2018) for an overview.
Much of this work is motivated by the aim to study preser-
vation and enforcement properties. Preservation is about
the extent to which the current status of arguments is pre-
served under change, while enforcement concerns the ex-
tent to which desirable outcomes can or will be obtained by
changing a framework. While this body of work is very in-
teresting, a limitation is that it disregards the structure of ar-
guments and the nature of their relations. In consequence,
it cannot recognise that some arguments are not attack-
able (such as arguments without assumptions in assumption-
based argumentation) or that some attacks cannot be deleted
(for example, undercutting attacks in ASPIC+), or that the
deletion of one argument implies the deletion of other argu-
ments (for example, when the deleted argument is part of
another argument), or that the deletion or addition of one
attack implies the deletion or addition of other attacks (for
example, attacking an argument implies that all arguments
of which it is part are also attacked). For these reasons, for-
mal results established at the abstract level may depend on
assumptions that do not hold in general.

Accordingly, there is a need for studying argumentation
dynamics in structured accounts of argumentation (Hunter
2014) and for relating such studies to abstract accounts.
This paper aims to do so for the notion of expansions of
abstract argumentation frameworks proposed by Baumann
and Brewka (2010), which will be instantiated with ASPIC+

(Modgil and Prakken 2018). The purpose of this is threefold:

studying what it takes to instantiate the abstract notion of
expansions, studying to which extent assumptions implicitly
made at the abstract level hold for structured instantiations
and studying which distinctions can be made at the struc-
tured level that cannot be expressed at the abstract level.
The choice for ASPIC+ is motivated by the facts that it is
well-studied and often applied while variants of assumption-
based (Toni 2014) and classical (Gorogiannis and Hunter
2011) argumentation can be reconstructed as special cases
of ASPIC+ (Modgil and Prakken 2018).

In our paper we will abstract from the particular ways to
use expansions. We will also abstract from the procedural
context in which argumentation takes place in that we will
disregard the question whether an expansion is allowed ac-
cording to the rules of debate (for example, whether argu-
ments of particular types are admissible in a legal sense). In-
stead, we will only take structural and logical constraints on
expansions into account as induced by the underlying struc-
tured account of argumentation expressed by ASPIC+.

The rest of this paper is organised as follows. After pre-
senting the formal preliminaries in Section 2, we will in Sec-
tion 3 recall Prakken’s (2022) refinement at the abstract level
of Baumann and Brewka’s (2010) notions of expansions.
These refined notions will allow us to make explicit some
implicit assumptions underlying a central result of Baumann
and Brewka (2010). We will then instantiate the refined no-
tions of expansions in terms of ASPIC+ in Section 4 and
explore some formal properties in Section 5. We discuss re-
lated work in Section 6, after which we conclude.

2 Formal Preliminaries
In this section we summarise the theory of abstract argumen-
tation frameworks and their expansions, and ASPIC+.

2.1 Abstract Argumentation Frameworks and
their Expansions

An abstract argumentation framework (AF ) is a pair
(A,D), where A is a set of arguments and D ⊆ A × A
is a relation of defeat.1 The theory of AFs (Dung 1995)
identifies sets of arguments (called extensions) which are in-
ternally coherent and defend themselves against defeat. An

1Dung used the term ‘attack’ but since we will interpret it as the
ASPIC+ defeat relation, we will use ‘defeat’.



argument A ∈ A is defended by a set by S ⊆ A if for all
B ∈ A: if B defeats A, then some C ∈ S defeats B. Then
relative to a given AF , E ⊆ A is admissible if E is conflict-
free and defends all its members; E is a complete extension
if E is admissible and A ∈ E iff A is defended by E; E is
a preferred extension if E is a ⊆-maximal admissible set; E
is a stable extension if E is admissible and attacks all argu-
ments outside it; and E ⊆ A is the grounded extension if
E is the least fixpoint of operator F , where F (S) returns all
arguments defended by S.

It holds that any preferred, stable or grounded extension
is a complete extension. For T ∈ {complete, preferred,
grounded, stable}2, X is skeptically or credulously justified
under the T semantics if X belongs to all, respectively at
least one, T extension.

Baumann and Brewka (2010) define various kinds of ex-
pansions of AFs as follows.

Definition 1. [Expansions] An abstract argumentation
framework AF ′ is an expansion of an abstract argumenta-
tion framework AF = (A,D) iff AF ′ = (A ∪ A′,D ∪ D′)
for some nonempty A′ disjoint from A. An expansion is

1. normal iff for all A,B: if (A,B) ∈ D′ then A ∈ A′ or
B ∈ A′,

2. strong iff it is normal and for all A,B: if (A,B) ∈ D′
then it is not the case that A ∈ A and B ∈ A′,

3. weak iff it is normal and for all A,B: if (A,B) ∈ D′ then
it is not the case that A ∈ A′ and B ∈ A.

In this paper we will mainly focus on normal expansions,
since when instantiated with ASPIC+, new defeats involving
old arguments will be possible.

2.2 The ASPIC+ Framework
The ASPIC+ framework defines abstract argumentation sys-
tems as structures consisting of a logical languageL and two
sets Rs and Rd of strict and defeasible inference rules de-
fined over L. In this paper we for simplicity assume that
L contains ordinary negation ¬ but all new definitions pro-
posed in this paper can be easily adapted to versions of
ASPIC+ with asymmetric negation. Arguments are con-
structed from a knowledge base (a subset of L) by chaining
inferences over L into acyclic graphs (which are trees if no
premise is used more than once). Formally,

Definition 2. [Argumentation System] an argumentation
system (AS) is a triple AS = (L,R, n) where:
• L is a logical language with a negation symbol ¬;
• R = Rs ∪ Rd is a finite set of strict (Rs) and defeasible

(Rd) inference rules of the form ϕ1, . . . , ϕn → ϕ and
{ϕ1, . . . , ϕn} ⇒ ϕ respectively (where ϕi, ϕ are meta-
variables ranging over wff in L), such that Rs ∩ Rd =
∅. Here, ϕ1, . . . , ϕn are called the antecedents and ϕ the
consequent of the rule.

• n is a partial function such that n : Rd −→ L.
2In later papers new semantics have been introduced, see Ba-

roni, Caminada, and Giacomin (2011), but we only discuss these
semantics of Dung (1995).

Informally, n(r) is a well-formed formula (wff) in L
which says that the defeasible rule r ∈ R is applicable, so
that an argument claiming ¬n(r) attacks an inference step
in the argument using r. We write ψ = −ϕ just in case
ψ = ¬ϕ or ϕ = ¬ψ. We use ; as a variable ranging over
{→,⇒}. Since the order of antecedents of a rule does not
matter, we sometimes write S ; ϕ where S is the set of all
antecedents of the rule.
Definition 3. [Knowledge bases] A knowledge base in an
AS = (L,R, n) is a set K ⊆ L consisting of two disjoint
subsets Kn (the axioms) and Kp (the ordinary premises).
Definition 4. [Argumentation theories] An argumentation
theory is a pair (AS,K) where AS is an argumentation sys-
tem and K a knowledge base in AS.
Definition 5. [Arguments] A argument A on the basis of
an argumentation theory AT is a structure obtainable by
applying one or more of the following steps finitely many
times:

1. ϕ if ϕ ∈ K with: Prem(A) = {ϕ}; Conc(A) = ϕ;
Prop(A) = {ϕ},
Sub(A) = {ϕ}; Rules(A) = ∅; DefRules(A) = ∅;
TopRule(A) = undefined.

2. A1, . . . , An ; ψ if A1, . . . , An are arguments such that
ψ 6∈ Conc({A1, . . . , An}) and Conc(A1), . . . , Conc(An)
; ψ ∈ R with:
Prem(A) = Prem(A1) ∪ . . . ∪ Prem(An);
Conc(A) = ψ;
Prop(A) = Prop(A1) ∪ . . . ∪ Prop(An) ∪ {ψ},
Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A};
Rules(A) = Rules(A1) ∪ . . . ∪ Rules(An) ∪
{Conc(A1), . . . , Conc(An) ; ψ};
DefRules(A) = Rules(A) ∩Rd;
TopRule(A) = Conc(A1), . . . , Conc(An) ; ψ.

Premn(A) = Prem(A) ∩ Kn and Premp(A) = Prem(A) ∩
Kp. Furthermore, argument A is strict if DefRules(A) = ∅
and defeasible otherwise, and A is firm if Premp(A) = ∅,
otherwise A is plausible. The set of all arguments on the
basis of AT is denoted by AAT .
Each of the functions Func in this definition is also de-
fined on sets of arguments S = {A1, . . . , An} as follows:
Func(S) = Func(A1) ∪ . . . ∪ Func(An). Note that the
→ and⇒ symbols are overloaded to denote both inference
rules and arguments. In this paper we do not discuss variants
of ASPIC+ in which the premises of an argument must be
consistent (see Modgil and Prakken (2018)). All new defini-
tions proposed in this paper directly apply to these versions.
Definition 6. [Attack] Argument A attacks argument B iff
A undercuts or rebuts or undermines B, where:
• A undercuts B (on B′) iff Conc(A) = −n(r) and B′ ∈
Sub(B) such that B′’s top rule r is defeasible.
• A rebuts B (on B′) iff Conc(A) = −ϕ for some B′ ∈
Sub(B) of the form B′′1 , . . . , B

′′
n ⇒ ϕ.

• A undermines B (on ϕ) iff Conc(A) = −ϕ for some ϕ ∈
Prem(B) ∩ Kp.

Definition 7. [Structured Argumentation Frameworks]
A structured argumentation framework (SAF) defined by an



argumentation theory AT is a triple (A, C, �) where A is
the set of all arguments on the basis of AT , � is an ordering
on A and (X,Y ) ∈ C iff X attacks Y .

The notion of defeat is now defined as follows. Undercut-
ting attacks succeed as defeats independently of preferences
over arguments, since they express exceptions to defeasible
inference rules. Rebutting and undermining attacks succeed
only if the attacked argument is not stronger than the attack-
ing argument, where A ≺ B is defined as usual as A � B
and B 6� A and A ≈ B as A � B and B � A. Below
we assume that for no arguments A and B both A ≺ B and
B ≺ A hold, while, moreover, if A is strict and firm, then
A ≺ B does not hold.
Definition 8. [Defeat] Argument A defeats argument B iff
either A undercuts B; or A rebuts or undermines B on B′
and A ⊀ B′.

Abstract argumentation frameworks are then generated
from SAFs as follows:
Definition 9. [Argumentation frameworks] An abstract
argumentation framework (AF) corresponding to a SAF =
(A, C,�) is a pair (A,D) such that D is the defeat relation
on A determined by SAF .

3 An abstract framework for specifying
expansions

In this section we recall Prakken’s (2022) refined versions
of Baumann and Brewka’s (2010) notions of an expansion.
The main refinements are that expansions are now relative
to a given background universal argumentation framework
UAF = (Au,Du) and that expansions can be allowed or
not allowed. Prakken (2022) made these refinements part
of an abstract account of dialectical argument strength. For
present purposes they will turn out to be useful for avoiding
implicit assumptions at the abstract level that are not always
satisfied by instantiations. An interesting question is how a
UAF can be sensibly fixed in applications. In the following
sections we will make several observations on how this can
be done on logical, dialogical or knowledge-based grounds.
Definition 10. [Argumentation frameworks in a uni-
versal AF] Given a universal argumentation framework
UAF = (Au,Du), an argumentation framework in UAF
is any AF = (A,D) such that A ⊆ Au and D ⊆ Du

|A×A.

The fact thatD is not required to equalDu
|A×A is to allow

for instantiations with systems like ASPIC+ that use prefer-
ences to resolve attacks.

We must also distinguish between allowed and not al-
lowed expansions. One reason is that the dialogical protocol
may impose constraints, such as admissibility of particular
types of evidence or arguments. The problem context may
also impose restrictions. For example, in investigation pro-
cedures in which information gathering is interchanged with
argument construction from the gathered information, there
may be requirements that all and only relevant arguments
constructible from the gathered information are included.
Finally, and the most relevant for the present paper, underly-
ing structured accounts of argumentation may impose such
constraints, as we will see in Section 4 for ASPIC+.

Definition 11. [Expansions given a universal argumen-
tation framework] Let AF = (A,D) and AF ′ be two ab-
stract argumentation frameworks in UAF . Then AF ′ is an
expansion of AF given UAF if AF ′ = (A ∪ A′,D ∪ D′)
for some nonempty A′ disjoint from A. The notions of a
normal, weak and strong expansion in UAF are defined as
the corresponding notions in Definition 1.

Let XUAF (AF ) be the set of all expansions of AF given
UAF . Then the set of allowed expansions of AF given
UAF is some designated subset of XUAF (AF ).

We can now explain how a central result of Baumann
and Brewka (2010) depends on some implicit assumptions.
Their Theorem 4 says that for T ∈ {complete, preferred,
grounded, stable}3, for any AF = (A,D) and for any
conflict-free C ⊂ A unequal to a T -extension of AF , there
exists a strong expansion AF ′ of AF such that C ⊂ E
for some T -extension E of AF ′, where the expansion can
be chosen such that E is the unique T -extension of AF ′.
The proof of this result shows how a single argument can
be added that defeats all arguments in AF outside C. This
construction depends on the assumptions that this expansion
is available given UAF and is allowed, which, as explained
in Section 4 may not be the case. However, this assump-
tion is not implied by our Definitions 10 and 11 and in Sec-
tion 4 we will see that this is for good reasons. For now
we give a simple abstract example (also given by Baumann
and Brewka), with an AF consisting of two arguments A2

and A1 where A2 defeats A1. According to Baumann and
Brewka the AF can be expanded by adding some A3 de-
feating A2 but if A2 is unattackable, (for instance, since it is
a strict-and-firm ASPIC+ argument or an argument without
assumptions in assumption-based argumentation), then no
UAF respecting the underlying structured account will en-
able or allow such an expansion. This illustrates one benefit
of our Definitions 10 and 11, namely, that they enable the
explicitation of assumptions that are implicit in Definition 1.

4 Instantiating the abstract framework for
ASPIC+

In this section we instantiate Definitions 10 and 11 for AS-
PIC+. This requires a specification of how the UAF can
be generated by a universal structured argumentation frame-
work to which it corresponds. Since a SAF is in ASPIC+ de-
termined by an argumentation theory, we must also specify
the notion of a universal argumentation theory.

4.1 Universal structured argumentation
frameworks

A UAF is now defined as corresponding to a universal struc-
tured argumentation framework, which is in turn defined by
a universal argumentation theory. Together, they define the
space of possible knowledge bases, possible sets of infer-
ence rules and possible argument orderings and thus define
the space of possible argumentation frameworks.

3Baumann and Brewka (2010) also include ideal semantics.



Definition 12. [Universal Argumentation theories and
universal structured AFs] A universal argumentation the-
ory is a tuple UAT = ((Lu,Ru

s ∪Ru
d , n

u),Ku
n∪Ku

p ) where
all elements are defined as for ASPIC+ argumentation theo-
ries except that Ku

n and Ku
p do not have to be disjoint. Then

a universal structured argumentation framework defined by
UAT is a tuple USAF = (Au, Cu,�u) defined according to
Definition 7, where �u is an empty preference ordering on
Au. A UAF = (Au,Du) that is the abstract argumentation
framework corresponding to some given USAF is denoted
by sUAF .

Note that the sets Ru
s and Ru

d of a UAT are not re-
quired to contain all well-formed strict, respectively, de-
feasible rules over Lu. This is to allow for instantiations
where the strict rules are defined by a logical interpretation
of Lu and/or the defeasible rules correspond to some recog-
nised set of argument schemes. The limiting case whereRu

s
and Ru

d do contain all well-formed rules over L is suitable
for applications where the choice of strict and/or defeasi-
ble rules is fully free, as, for instance, in online debate set-
tings. For similar reasons Ku

p and Ku
p are not required but

are allowed to equal Lu. The reason why Ku
n and Ku

p can
overlap is to allow that the type of a premise is unspecified
until determined when constructing an AT in UAT . Ac-
cordingly, to keep the notion of an argument on the basis of
a UAT well-defined, we now assume that in Definition 5(1)
it is explicitly indicated whether a premise is taken from Ku

n
or from Ku

p . Finally, the idea behind the choice of �u as
the empty ordering is that a universal SAF does not commit
to any way to resolve preference-dependent conflicts. Note
that the empty ordering induces the greatest set of defeat
relations in that every attack succeeds as defeat. Commit-
ments on how conflicts should be resolved can be expressed
in the specification of a SAF in a USAF , by adopting any
nonempty argument ordering. At the abstract level this was
captured in Definition 10 in the use of ⊆ instead of = in the
requirement that D ⊆ Du

|A×A. The structural counterpart of
this definition looks as follows.

Definition 13. [Argumentation theories and structured
AFs in a universal AT] An argumentation theory in a given
UAT is an ASPIC+ argumentation theory AT = ((L,Rs ∪
Rd, n),Kn ∪ Kp) where

• L ⊆ Lu;
• R ⊆ {S ; ϕ ∈ Ru | S ⊆ L and ϕ ∈ L};
• Kn ⊆ Ku

n;
• Kp ⊆ Ku

p ;
• n = nu ∩ {(r, ϕ) | r ∈ Rd}.
An argumentation theory in UAT is objective iffKn = Ku

n∩
L, it is logic-based iff Rs = {S → ϕ ∈ Ru

s | S ⊆ L and
ϕ ∈ L}, and it is strongly logic-based iff R = {S ; ϕ ∈
Ru | S ⊆ L and ϕ ∈ L}.

A structured argumentation framework in UAT is a struc-
tured argumentation framework SAF = (A, C,�) defined
by an AT in UAT for some ordering � on A.

Objective ATs are called objective since they accept
all necessary premisses from UAT that can be expressed

in their language. Objective ATs may be suitable for
knowledge-based systems (such as for medical diagnosis or
crime investigation), in which the general knowledge is fixed
but investigations must be done to gather specific observa-
tions (such as medical tests on a person who is ill, or search-
ing for evidence predicted by a crime scenario). (Strongly)
logical ATs are called thus since they accept all (defeasible
and) strict inference rules from UAT that can be expressed
over their language. Consider, for example, a UAT with L a
propositional language andRs = {S → ϕ | S ⊆ L and S is
finite and ϕ ∈ L and S ` ϕ}where ` denotes propositional-
logical consequence. Then all logic-based AT ’s in UAT
allow for deductive reasoning with the full power of propo-
sitional logic over their language. Non-logic-based and non-
objective ATs make sense for the formal reconstruction of
natural-language debates, in which often anything can be
said and challenged. So then the universal sets of infer-
ence rules correspond to any argument that can be con-
structed, whether ‘valid’ in some sense or not, and the uni-
versal knowledge base consists of any premise that can be
used, whether it corresponds to genuine knowledge or not.

The following proposition captures that Definitions 12
and 13 indeed instantiate Definitions 10 and 11 since it im-
plies that every AF that can be generated from a universal
argumentation theory is an AF in the same universal AF as
required by Definition 10 (which is used in Definition 11).
Proposition 1. Given a USAF = (Au, Cu,�u) in a
UAT = ((Lu,Ru

s ∪ Ru
d , n

u),Ku
n ∪ Ku

p ), an AF = (A,D)
corresponding to a SAF = (A, C,�) in UAT is an AF in
sUAF = (Au,Du), where sUAF corresponds to USAF .

Proof. It holds that A ⊆ Au by definition of a SAF in
UAT . Furthermore, it holds that D ⊆ D′ since �u= ∅
and therefore makes every attack succeed as defeat, so no
additional defeat relations are possible.

4.2 Allowed expansions
So far all we have done is instantiating the notion of an AF
in a UAF for ASPIC+(as captured by Proposition 1). The
next step is to define the allowed expansions of an AF that
corresponds to a SAF in a universal argumentation theory.
The main task is to ensure that the result of such an expan-
sion still corresponds to a structured AF in the universal
argumentation theory, in order to respect the structural con-
straints imposed by ASPIC+. Since the idea of expansions
as originally proposed by Baumann and Brewka (2010) is
that information is only added and not deleted, a natural way
to achieve this is to require that expansions correspond to
a SAF that expand (in a sense to be defined) the SAF to
which the expanded AF corresponds. This is directly stated
by the following definition. It assumes that the argument or-
dering � of a SAF comes with a definition of its type, as,
for example, the definitions of a basic, weakest- or last link
ordering (Modgil and Prakken 2018).
Definition 14. [Allowed expansions] Consider any AF in
a given sUAF that corresponds to a SAF = (A, C,�)
in UAT defined by AT = ((L,R, n),K), and consider
any AF ′ in sUAF that expands AF . Then AF ′ is an al-
lowed expansion of AF given UAF iff AF ′ corresponds



to a SAF ′ = (A′, C′,�′) in UAT defined by AT ′ =
((L′,R′, n′),K′) such that:

1. L ⊆ L′;
2. R ⊆ R′;
3. Kn ⊆ K′n and Kp ⊆ K′p;
4. for �′ it holds that

(a) �′ is of the same type as �;
(b) � ⊆ �′;
(c) A ≺′ B if A ≺ B;

5. if AT is (strongly) logic-based then AT ′ is (strongly)
logic-based;

6. if AT is objective then AT ′ is objective.
Strictly speaking there is no need to define additional con-

straints on �′ since the defeat relation of an expansion is by
definition contained in the defeat relation of the expanded
AF . Nevertheless, the specified constraints agree with the
idea that only information is added. Note that the constraints
on�′ together make that SAF ′ extends SAF in the sense of
Modgil and Prakken (2012). In this case we also say that �′
extends �. Adding preferences to resolve attacks (in the
sense of Modgil and Prakken (2012)) between arguments
makes sense in the present setup, since it is analogous to
adding new rules or premises to an AT .

Although at the structured level expansions can be gen-
erated by simply expanding an argumentation theory, they
can also be induced by sets of new arguments, for instance,
put forward in a debate. Therefore, it is useful to define the
notion of an AT extended by a set of arguments.
Definition 15. [Argumentation theories extended by sets
of arguments] Let AT = ((L,Rs ∪ Rd, n),Kn ∪ Kd) be
an argumentation theory in a given UAT and let S ⊆ Au.
Then AT + S is defined as ((L′,R′s ∪ R′d, n′),K′n ∪ K′d)
such that:

1. L′ = L ∪ Prop(S);
2. R′s = Rs ∪ Rules(S) ∩ Ru

s if AT is not logic-based,
otherwiseR′s = {S → ϕ ∈ Ru

s | S ⊆ L′ and ϕ ∈ L′};
3. R′d = Rd ∪ Rules(S) ∩ Ru

d if AT is not strongly logic-
based, otherwise R′d = {S ⇒ ϕ ∈ Ru

d | S ⊆ L′ and
ϕ ∈ L′};

4. n′ = n ∪ nu ∩ {(d, ϕ) | d ∈ Ru
d and ϕ = nu(d)};

5. K′n = Kn ∪ {ϕ | ϕ ∈ Premn(S) ∩ Ku
n and ϕ 6∈ Kp} if

AT is not objective, otherwise K′n = Ku
n ∩ L′;

6. K′p = Kp ∪ {ϕ | ϕ ∈ Premp(S) ∩ Ku
p and ϕ 6∈ Kn}.

One idea here is that AT + S adds all language elements,
rules and premises of any argument in S to the correspond-
ing elements of AT . A complication is that if an argument
in S uses a premise that is in both Ku

n and Ku
p , then AT + S

has to respect the choice of the type of the premise made in
AT . A second idea is that if AT is (strongly) logic-based,
then AT + S also adds all strict (and defeasible) rules over
the extended language that are not in either AT nor used in
any argument in S. This ensures that ‘implied’ arguments
that are neither constructible on the basis of AT nor a mem-
ber of S are constructible on the basis of AT ′. Finally, note
that arguments in S cannot change the type of elements in

K. If S fully respects the type of elements of K, we say
that S respects K of AT . (Similar concerns do not arise for
the set of rules, since there can be strict and defeasible rules
with the same antecedents and consequent.)
Proposition 2. The following observations hold:

1. AT + S is an argumentation theory in UAF .
2. If AT is (strongly) logic-based then AT + S is (strongly)

logic-based andRs ⊆ R′s (andRd ⊆ R′d).
3. Let SAF = (A, C,�) and SAF ′ = (A′, C′,�′) be struc-

tured argumentation frameworks defined by, respectively,
AT and AT + S and let � and �′ satisfy condition (4)
of Definition 14. Let AF correspond to SAF and AF ′
correspond to SAF . Then AF ′ is an allowed expansion
of AF .
Item (3) of this proposition implies that allowed expan-

sions at the abstract level can be generated from a given
SAF by extending the argumentation theory defining the
SAF in a way that satisfies according to Definition 15 and
extending the argument ordering of the SAF in a way that
satisfies condition (4) of Definition 14.

5 Properties
In this section we investigate some properties of the for-
mal account of the previous section. To start with, since
an expansion that is allowed according to Definition 14 cor-
responds to a SAF , it by definition satisfies closure under
argument construction, under the subargument relation and
under the constraints that ASPIC+ imposes on the defeat re-
lation. For example, it satisfies the constraint that if A de-
feats B and B is a subargument of C, then A defeats C (in
the literature on bipolar argumentation frameworks (Cohen
et al. 2018) called closure under secondary attacks).

Next it holds that each allowed expansion adds at least
one rule or one premise, otherwise it contains no new argu-
ments. Furthermore, if all argumentation theories in UAT
are strongly logic-based, then each allowed expansion adds
at least one new premise, since otherwise such expansions
cannot add new rules and so cannot give rise to new argu-
ments. The same does not hold if all argumentation theories
in UAT are logic-based but not strongly so, since then an
allowed expansion can add a new defeasible rule.

We next identify a set of assumptions under which
the structured counterpart of Theorem 4 of Baumann and
Brewka (2010) holds. We first prove necessary-and-
sufficient conditions for credulous enforcement in complete
and preferred semantics in that a set of arguments can be
made part of a preferred or complete extension of an expan-
sion. We will focus on sets of arguments that are not in any
extension. Note that this is a special case of sets of argu-
ments that are unequal to any T -extension, which are the
focus of Theorem 4 of Baumann and Brewka (2010). Yet
another option would be to consider sets of arguments that
are not a subset of any extension. One reason for deviating
from Baumann and Brewka (2010) is that if S is a proper
subset of some extension, then there is no need to consider
expansions to make S part of an extension (note that all ex-
pansions add at least one argument, so this case cannot be
included as a special case of enforcement).



Theorem 1. Let T ∈ {complete, preferred}, let AF =
(A,D) be an abstract argumentation framework in a sUAF
that corresponds to a SAF = (A, C,�) in a UAT , and
S ⊆ A any nonempty conflict-free set of arguments that
are not a member of any T -extension of AF . Then there
exists an allowed normal expansion AF ′ of AF in sUAF
corresponding to a SAF ′ = (A′, C′,�′) such that S ⊂ E′

for a T -extension of AF ′ iff there exists a nonempty set
S′ ∈ Au \ A respecting K of the AT defining SAF and
some�′ extending� while preserving its type, such that ac-
cording to �′:

1. S ∪ S′ is conflict-free;
2. every defeater of S ∪S′ inAAT+S′ is defeated by S ∪S′.

Proof. The if-part is immediate from the definition of an ad-
missible set and the facts that any admissible set is included
in a preferred extension and that any preferred extension is
complete, while the only-if part follows from the fact that
every preferred or complete extension is an admissible set
(Dung 1995).

For stable semantics there are counterexamples. Consider
AF = ({A,B}, {(A,A)}}: then {B} cannot be credu-
lously enforced if the UAF contains no defeater of A. If
S is instead chosen to be any conflict-free set not included
in any T -extension then the if-part still holds but there are
counterexamples to the only-if part. For an abstract coun-
terexample see Figure 1 and let S = {A,C} and let USAF
contain an undefeated defeater of B but not of C. Then
condition (2) of Theorem 1 is not satisfied but expanding
AF with the defeater of B makes S part of every preferred
and every complete extension, since C is defended by E.
A structured instantiation of this example can be easily de-
fined.

Figure 1: Counterexample to modified Theorem (only-if part).

Admittedly the conditions under which Theorem 1 holds
are quite high-level but useful examples can be given about
more concrete conditions under which these conditions are
or are not satisfied. Before discussing such examples, we
first identify a set of sufficient conditions for skeptical en-
forcement in complete, preferred and grounded semantics
(i.e., for when a set of arguments can be made part of all
extensions of these kinds for some expansion).

Theorem 2. Let T ∈ {complete, preferred, grounded}, let
AF = (A,D) be an abstract argumentation framework in a
sUAF that corresponds to a SAF = (A, C,�) in a UAT ,
and S ⊆ A any nonempty conflict-free set of arguments that
are not a member of any T -extension of AF . Then there
exists an allowed normal expansion AF ′ of AF in sUAF
corresponding to a SAF ′ = (A′, C′,�′) such that S ⊂ E′

for all T -extensions of AF ′ if there exists a nonempty set

S′ ∈ Au \ A respecting K of the AT defining SAF and
and some�′ extending� while preserving its type such that
according to �′

1. AAT+S′ does not defeat S′;
2. every defeater of S in AAT+S′ is defeated by S′.

Proof. Consider without loss of generality a minimal set S′
satisfying assumptions (1-2), and let AF ′ correspond to the
SAF ′ = (A′, C′,�′) determined by AT + S′ with �′ some
extension of � that preserves its type. With this choice of
SAF ′, AF ′ corresponds to a SAF ′ that satisfies the condi-
tions of Definition 14 so it is an allowed expansion of AF .
We can choose S′ in such a way that it equals AAT+S′ \ A.
Let us do so.

By assumption (1) we have that S′ is conflict-free and all
its members are undefeated in AF ′. Then S′ is included in
the grounded extension of AF ′ since it is undefeated. But
then assumption 2 gives that S′ is defended by the grounded
extension of AF ′ so S′ is included in it. Finally, since a
grounded extension is included in every preferred and ev-
ery complete extension (Dung 1995), S is included in every
preferred and every complete extension of AF ′.

We next prove a result on skeptical enforcement of sin-
gle arguments given a particular kind of UAT by adapting
the notion of strong unacceptability from Rapberger and Ul-
bricht (2022) to our setting. For any AF in a given UAF ,
let an argument A be strongly unacceptable in AF iff AF
contains a defeaterB such that any argumentC in UAF that
defeats B also defeats A. Then the following holds.

Theorem 3. Let T ∈ {complete, preferred, stable,
grounded}, let AF = (A,D) be an abstract argumentation
framework in a sUAF that corresponds to a SAF in a UAT
where RUAT

s contains rules→ ϕ for every ϕ ∈ LUAT . Let
A ∈ A be any argument that is not skeptically T -acceptable
in AF . Then there exists an allowed expansion AF ′ of AF
given UAF in which A is skeptically T -acceptable iff A is
not strongly unacceptable in AF .

Proof. Suppose A is not skeptically T -acceptable in AF . If
A is strongly unacceptable in AF , then A has a defeater B
in AF for which any defeater in sUAF also defeats A in
sUAF . This in particular holds for all defeaters C of the
from → −ϕ for a rebuttable conclusion, ordinary premise
or name of a defeasible rule of B of the form ϕ, which de-
featers exist by assumption on RUAT

s . Since by assumption
on � for no such C it holds that C ≺ B, these defeat re-
lations also hold in any expansion of AF with C. Then no
expansion can make A T -acceptable.

IfA is not strongly unacceptable inAF , then any defeater
B of A in AF has defeaters in sUAF . Any such defeater
has a conclusion −ϕ for a wff ϕ that is either a rebuttable
conclusion or an ordinary premise or a name of a defeasible
rule of B. But then UAT contains a rule→ −ϕ which as an
argument C is an undefeatable defeater of B in both sUAF
and (by the assumption on ≺ for strict-and-firm arguments)
any extension of AF with C. Then extending AF with C
results in an AF ′ for which A is in the grounded extension.



And since that extension is included in all complete, stable
and preferred extensions (Dung 1995), A is also in all those
extensions of AF ′.

The proof of the only-if part implies that it also holds for
any case where the argument ordering is simple (A � B iff
A is defeasible or plausible and B is strict and firm), regard-
less of the content ofRUAT

s . Moreover, for T ∈ {complete,
preferred, grounded} the credulous version of Theorem 3
(where A is not credulously acceptable in AF but can be
made so in an allowed expansion) is provable in exactly the
same way. For stable semantics the proof of the if-part must
be extended to guarantee the existence of stable extensions.

We now discuss more concrete conditions under which
the conditions of Theorems 1 and 2 are not satisfied.

Not all arguments are attackable In Section 3 we already
observed that Theorem 4 of Baumann and Brewka (2010)
depends on the assumption that all arguments are attackable.

No conflict-free set of defenders Let Ku
n = ∅ and con-

sider an AF consisting of A:⇒ q defeated by both B: p→
¬q and C: ¬p → ¬q where A ≺ B and A ≺ C and where
the strict version of the argument ordering ≺ is asymmetric.
Assume, furthermore, that on the basis of UAT only one
defeater D: r → ¬p of B and one defeater E: ¬r → p of
C can be constructed and that Kn contains r and ¬r. Then
there is no conflict-free expansion that satisfies assumption
(2) of Theorem 1, since for any � it holds that D defeats E
or E defeats D.

Figure 2: An assumption underlying Theorem 4 of Baumann and
Brewka (2010).

All defenders imply a defeater Consider the example in
Figure 2 based on an AT with Kn = {q, s}, Kp = {p},
Rs = {s → ¬p; r → ¬p; r → ¬d2}, Rd = {q ⇒d1

r; s ⇒d2 ¬p} where the subscripts of ⇒ denote the rule
names. The AF contains A,B,C,D and all their subargu-
ments, where both B and C defeat A and D defeats C. As-
sume that A ≺ B and A ≺ C. Note that A is not in any
T -extension for T = grounded or complete or preferred,
since it is defeated by B which is undefeated. The ques-
tion is whether A can be made part of all T−extensions of
some allowed expansion of AF . All such expansions must
add a defeater E of B’s subargument for r. Assume that
on the basis of UAT a single undefeated argument E exists

that defeats B but no defeater of C other than D exists. For
instance, UAT could differ fromAT only in that it also con-
tains a strict rule s → ¬q. Then any expansion defeating B
containsE so alsoD is strictly defeated (on its subargument
for r). But then C is defended and prevents A from being in
any T -extension of the expansion. Hence no expansion ex-
ists in which A is in any T -extension. Dung (1995) calls ar-
guments like E, which both defend and indirectly defeat an
argument, controversial arguments. This example illustrates
another assumption underlying Theorem 4 of Baumann and
Brewka (2010), namely, that a defeat from a new to an old
argument has no side effects in that the new argument also
defeats other old arguments that are relevant to the status of
an argument in the set that should be in an extension of the
expansion. In other words, it is not the case in general that a
set S′ can be found such that S ∪ S′ is admissible.

Further implicit assumptions in Baumann and Brewka
(2010) are visualised in Figure 3, where the dotted boxes
contain AFs while the entire graphs are UAFs . For the

Figure 3: Further assumptions underlying Theorem 4 of Baumann
and Brewka (2010).

three abstract examples we leave it to the reader to verify
that instantiations for ASPIC+ exist.

No undefeated defenders Figure 3(a) refutes the assump-
tion that always an undefeated expansion can be found with
anAF withA = {A,B,C}, whereC defeatsB and USAF
contains just one argument that defeats C, namely, D but
which is defeated by A. Then there is no expansion that
makes {B} included in any extension.

No defenders Figure 3(b) refutes the assumption that al-
ways a defender of any argument in S exists in UAF .

No allowed way to extend the argument ordering For
refuting the assumption that � can always be extended in a
way that preserves its type and satisfies the other conditions
of Theorems 1 and 2 consider a definition that says ‘E ≺ G
iff F 6∈ A, else G ≺ E’ and consider the AF in Figure 3(c)



corresponding to a SAF with a � according to which ar-
gument F from USAF strictly defeats B and argument G
from USAF strictly defeats G. If USAF contains no other
arguments, then the only way to make {A,C} included in
a T -extension is to expand AF with F and G. But then
E strictly defeats G according to �′ so C is not in any T -
extension for any T . Note that �′ does not extend � since
E ≺ G while G ≺′ E. Similar examples can be constructed
for the weakest- or last link argument ordering (Modgil and
Prakken 2018) along the lines of Example 7 of Modgil and
Prakken (2012). That example illustrates that properties of
the argument ordering, such as transitivity, may make that
adding explicit preferences to resolve a conflict in a desired
way implies the addition of implicit preferences that prevent
resolving another conflict in the desired way.

Effects of implied arguments Finally, Figure 3(d) illus-
trates the possible effects of implied arguments. Consider a
logic-based AT with Kn = Kp = ∅, Rs = {→ ¬d1; q →
¬d2}, Rd = {⇒d1 p; ⇒d2 ¬d1} and where UAT has
q ∈ Ku

p and q → ¬d2 ∈ Ru
s . Consider then the AF in

Figure 3(d) and assume that sUAF further only contains q,
C and D. No expansion can make {A} included in a T -
extension for any T , since adding C (the only defender of A
against B) also adds D to the expansion, which defeats A.

6 Related research
As noted in the introduction, most formal work on argu-
mentation dynamics does not take the structure of arguments
and the nature of their relations into account. Nevertheless,
there is some recent relevant work. Wallner (2020) studies
constraints for dynamic operations on abstract or dialecti-
cal (Brewka and Woltran 2010) argumentation frameworks,
and discusses applications to enforcement in structured ac-
counts of argumentation. His ideas are motivated by simi-
lar considerations as ours, namely, that abstract approaches
can make implicit assumptions that are not satisfied by all
structured instantiations. Wallner distinguishes three kinds
of constraints on operators: semantic ones (e.g. constraints
on the semantic status of arguments in expansions), struc-
tural ones (e.g. that all extensions of expansions are closed
under subarguments) and syntactic ones (e.g. that all expan-
sions are an AF ). For AFs Wallner illustrates his approach
with an instantiation with assumption-based argumentation
(ABA), with as structural constraint on expansions that they
should contain all arguments implied by the knowledge base
(cf. Figure 3(d) above). Wallner does, unlike us, not discuss
to which extent enforcement results proved at the abstract
level depend on structural assumptions but instead studies
complexity and implementation issues. Wallner’s notion of
constraints on operations is similar to our notion of allowed
expansions. However, unlike us he does not consider uni-
versal background information. Moreover, in our approach,
structural constraints are not imposed but are instead implied
by our definition of allowed expansions as AFs that corre-
spond to a SAF defined by some AT . It would be interest-
ing to study whether explicitly distinguishing between struc-
tural and syntactic constraints has additional benefits for our

approach.
Early structured work on dynamics in ASPIC+ is Modgil

and Prakken (2012), who instantiate abstract resolution se-
mantics (Baroni, Dunne, and Giacomin 2011), which stud-
ies the effect of deletions of defeat relations on the possi-
ble statuses of arguments. This work has a similar aim as
ours, namely, to investigate which assumptions are implic-
itly made by abstract work on resolution semantics. If the
condition of expansions that they add at east one new argu-
ment is dropped, then Modgil and Prakken’s approach can
be seen as a special case of our structured approach.

More recently, Odekerken et al. (2020; 2022) have in the
context of ASPIC+ without preferences studied to which ex-
tent argument and conclusion statuses are ‘stable’ or can
change under expansions of the knowledge base. This work
is motivated by criminal-investigation applications in which
it is useful to check whether searching for further informa-
tion makes sense. In this work the set of future argumenta-
tion theories is defined as the set of all argumentation theo-
ries that extend the knowledge base of a given argumentation
theory AT = ((L,R, n),K) with a subset of a set Q ⊂ L
of queryables. This approach can be reconstructed as an in-
stance of our approach by letting UAT be ((L,R, n),K∪Q)
and by imposing the further constraint on Definition 14 that
an expansion can only add elements to K and can only take
these elements from Q. Formally this makes any (future)
argumentation theory strongly logic-based but this is only
since the rules capture domain-specific knowledge; no logic
is encoded in the rules. Since the knowledge base equates
Kn and can grow, the ATs are not objective. The work
of Odekerken et al. (2020) was abstracted by Mailly and
Rossit (2020) with incomplete argumentation frameworks
(Baumeister et al. 2021), which divide an AF in a certain
and an uncertain part. Incomplete AF s can be ‘specified’
by making uncertain arguments or attacks certain.

Borg and Bex (2021) develop a structured account of en-
forcement in Borg and Strasser’s (2018) ‘general argumen-
tation setting’, in which, among other things, a special case
of ASPIC+ with no ordinary premises and no preferences
was translated. Within this setting Borg and Bex (2021) de-
fine several notions of expansions and enforcement. Unlike
in our case, these notions of expansions are not formally re-
lated to abstract accounts of expansions. Instead, their main
focus is on enforcement results. Most of their results assume
that the setting is contrapositable, which is very similar to
closure in ASPIC+ of strict consequence under contraposi-
tion (capturing what can be derived with only strict-rule ap-
plication). However, unlike in ASPIC+, contraposition is
not restricted to the strict part of the logic. Thus most of
Borg and Bex’s results only apply to special cases of AS-
PIC+ with no defeasible rules (and no preferences and or-
dinary premises). It would be interesting to investigate how
their enforcement results relate to our Theorems 1 and 2 for
the special cases of ASPIC+ to which their results apply.

Finally, Rapberger and Ulbricht (2022) study enforcement
in ABA. Like us, they observe that results for abstract argu-
mentation frameworks do not automatically apply to struc-
tured instantiations. They then introduce ABA counterparts
of the abstract notion of enforcement and relate them to a



generalisation of abstract AFs called cvAFs, in which ‘in-
stantiated’ arguments x are defined as pairs (cl(x), vul(x))
where cl(x) is the argument’s conclusion while vul(x) is
its set of vulnerabilities. A cvAF is well-formed iff for ev-
ery x, y ∈ A it holds that x attacks4 y iff the conclusion of x
equals a vulnerability of y. The authors then prove complex-
ity results and necessary-and-sufficient conditions for en-
forceability of single arguments in well-formed cvAFs. Rap-
berger and Ulbricht then instantiate cvAFs with ABA, where
an argument’s vulnerabilities are the contraries of its as-
sumptions. This by definition results in well-formed cvAFs.
They observe that, like for AFs, results for cvAFs do not
automatically apply to ABA and they separately prove com-
plexity results for enforceability of single ABA arguments.

Let us now see how ASPIC+ could generate cvAFs. For
conclusions this is obvious, while the vulnerabilities are the
contradictories of all ordinary premises plus the contradic-
tions of all conclusions of any subargument with a defea-
sible top rule plus the contradictories of all names of de-
feasible rules used in the argument. Defining attack is then
straightforward, namely, A attacks B iff cl(A) = −v for
some v ∈ vul(B). Defining defeat is less straightforward,
since the proper application of preferences for determining
defeat depends on the structure of arguments, which is lost
in a cvAF encoding (contrary to Definition 9, which puts the
original ASPIC+ arguments in an AF ). The most sensible
way is to record which original ASPIC+ argument gave rise
to the cvAF argument and then define defeat as between the
original arguments. Note that the thus generated cvAFs are
guaranteed to be well-formed with respect to the attack rela-
tion but for the defeat relation this is only guaranteed if the
argument ordering is empty or simple (the simple ordering
says that that A � B iff B is strict-and-firm while A is de-
feasible or plausible). This is one reason why the results of
Rapberger and Ulbricht (2022) do not in general apply to the
present setting. Another reason is that they (like Borg and
Bex (2021)) do not explicitly work with notions like univer-
sal (structured) argumentation frameworks.

Having said so, Rapberger and Ulbricht still seem to im-
plicitly make assumptions about available background in-
formation. For example, they implicitly assume a fixed logi-
cal language and it seems to us that their Theorem 5.9 (an
argument in a cvAF is credulously enforceable according
to stable, preferred and complete semantics if and only if
it is not strongly unacceptable) relies on implicit assump-
tions on the availability of suitable arguments for expan-
sions. This is since otherwise the following example would
be a counterexample, in which cvAF consists of the argu-
ments A = (p, {v1}), B = (v1, {v2}) and C = (v3, ∅).
Note that B attacks A. Suppose that outside cvAF only ar-
gument D = (v2, {v3}) exists. Then A cannot be made ac-
ceptable by expanding cvAF withD since C attacksD. One
assumption that invalidates this counterexample is that for
every vulnerability v of an argument in cvAF there exists an
argument (v, ∅) that can be used in an expansion. (Note the
similarity with a condition of our Theorem 3.) ThenAF can
be expanded with D′ = (v2, ∅) to make A acceptable. This

4Rapberger and Ulbricht (2022) use ‘attack’ instead of ‘defeat’.

illustrates the importance of including an explicit notion of
background information in a theory of expansions. It would
be interesting to explore how the present approach and the
one of Rapberger and Ulbricht can be formally related.

7 Conclusion
In this paper we have proposed a structured variant in AS-
PIC+ of the notion of expansions of abstract argumentation
frameworks, with a threefold purpose. First, we wanted to
study what it takes to instantiate the abstract notion of expan-
sions with a structured account of argumentation. It turned
out that the structured account is more complicated than its
abstract counterpart. However, we believe that this is not
a problem of the present account; instead our findings il-
lustrate that the simplicity of Bauman and Brewka’s (2010)
abstract account in is deceptive. This was in particular re-
vealed by the fact that one of their key results turned out to
depend on a number of implicit assumptions. We believe it
is a merit of our approach that it allows making these as-
sumptions explicit, for which the loss of conceptual sim-
plicity is inevitable. This contribution is not only relevant
for ASPIC+. For example, because of translation results of
Prakken (2010) and Dung and Thang (2014) for many of our
examples variants exist in assumption-based argumentation.

A final aim was to study which potentially interesting dis-
tinctions can be made at the structured level that cannot be
expressed at the abstract level. We defined notions of objec-
tive and (strongly) logic-based argumentation theories and
proved simple properties of expansions that preserve these
types. However, more research on this can be done. More
generally, an important ingredient of our approach was the
explicit inclusion of universal (abstract or structured) ar-
gumentation frameworks from which expansions are con-
structed. Any structured (and arguably also any abstract)
study of expansions needs to fix a universal background,
otherwise there is no way to identify possible expansions.
Therefore, it is worthwhile to make notions of background
information explicit in order to develop a theory about them.
In the previous section we discussed how some other work
in fact assumes such a background. Moreover, in the course
of our paper we made several observations on how in appli-
cations a sensible background framework can be determined
on logical, dialogical or knowledge-based grounds.

As for other future research, our approach can also be ap-
plied to other abstract accounts of argumentation dynamics.
For instance, Coste-Marquis et al. (2015) propose a vari-
ant of expansions in which the set of attack relations can
change, and a proposition similar to Theorem 4 of Baumann
and Brewka (2010) is proven. This proposition may make
similar implicit assumptions. More generally, this kind of
future research is important for any abstract account of ar-
gumentation dynamics, such as the approaches reviewed in
Section 3.1 of Doutre and Mailly (2018) that study the con-
sequences of adding or deleting a single argument or at-
tack, the work on incomplete argumentation frameworks,
the work on control argumentation frameworks, which gen-
eralises the notion of enforcement (Dimopoulos, Mailly, and
Moraitis 2018) and, finally, the work on argumentation-
based belief revision (Baroni et al. 2022).
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