
Justification, stability and relevance for case-based reasoning
with incomplete focus cases

Daphne Odekerken∗
d.odekerken@uu.nl
Utrecht University

National Police Lab AI
The Netherlands

Floris Bex
f.j.bex@uu.nl

Utrecht University
Tilburg University
The Netherlands

Henry Prakken
h.prakken@uu.nl
Utrecht University

University of Groningen
The Netherlands

ABSTRACT
We define and study the notions of stability and relevance for
precedent-based reasoning, focusing on Horty’s result model of
precedential constraint. According to this model, precedents con-
strain the possible outcomes for a focus case, which is a yet unde-
cided case, where precedents and the focus case are compared on
their characteristics (called dimensions). In this paper, we refer to
the enforced outcome for the focus case as its justification status.
In contrast to earlier work, we do not assume that all dimension
values of the focus case have been established with certainty: rather,
each dimension is assigned a set of possible values. We define a
focus case as stable if its justification status is the same for every
choice of the possible values. For focus cases that are not stable,
we study the task of identifying relevance: which possible values
should be excluded to make the focus case stable? We show how
the tasks of identifying justification, stability and relevance can
be exploited for human-in-the-loop decision support. Finally, we
discuss the computational complexity of these tasks and provide
efficient algorithms.

CCS CONCEPTS
• Theory of computation → Theory and algorithms for ap-
plication domains; • Applied computing→ Law.

KEYWORDS
case-based reasoning, stability, relevance, complexity, algorithms,
human-in-the-loop, decision support
ACM Reference Format:
Daphne Odekerken, Floris Bex, and Henry Prakken. 2023. Justification,
stability and relevance for case-based reasoning with incomplete focus
cases. In Nineteenth International Conference on Artificial Intelligence and
Law (ICAIL 2023), June 19–23, 2023, Braga, Portugal. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3594536.3595136

1 INTRODUCTION
Modelling reasoning with legal cases has been an important topic in
the computational study of legal argument. This type of reasoning

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICAIL 2023, June 19–23, 2023, Braga, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0197-9/23/06. . . $15.00
https://doi.org/10.1145/3594536.3595136

is applied to problems that are not decided by a legal rule but by
comparing the characteristics of cases. In particular, the character-
istics of a new case for which the outcome still has to be decided
(called focus case) are compared to the characteristics of precedent
cases for which the outcome has already been assigned. In the sem-
inal work on the HYPO system for US trade secrets law [17], these
characteristics were multi-valued and were called dimensions. Later,
in influential work on the CATO system [1], the characteristics of
a case were considered to be boolean and were called factors. Each
factor or dimension has some direction: a factor’s presence favours
one of the two parties in a case and some dimension values are
more favourable to one of the parties than other values.

Studies on reasoning with legal cases have multiple applications.
The first systems were designed to generate arguments in the legal
domain [17], for example for teaching purposes [1]. Later work,
initiated by Horty in [8], addressed the question how precedents
constrain the possible decisions for a focus case, thereby providing
multiple models, including a result model of precedential constraint.
Recently, this model has been used for explaining machine-learning-
based decisions (e.g. [13, 15]). In this paper, we study an alternative
application of the result model from [8], namely the use of themodel
itself as a classifier for human-in-the-loop decision support. We
implemented a simplified version of this model for the classification
of mala fide webshops. This is a classification problem where it is
important that decisions are taken consistently. That is, if a decision
is taken once, then in similar (or more extreme) situations, the same
decision should be taken – which is exactly the kind of reasoning
modelled by the result model of precedential constraint.

We propose to extend the result model for precedential constraint
with a component that provides the possibility to express uncer-
tainties in the dimension values of a focus case.1 This is motivated
by the situation that may occur in practical applications in which
the values of some dimensions have not yet been determined with
certainty. Typically, investigation into these dimensions requires
time and effort. It is therefore useful to identify cases for which the
same outcome is enforced, regardless of the way the uncertainties
in dimension values are resolved: in those cases, there is no need
for investment in further investigation.

Interestingly, the suggestion of studying hypothetical variations
to the focus case by varying dimension values was already put
forward for HYPO in [4], motivated by similar reasons as ours: as
explained in [2], suggestions for hypothetical variations are useful
in lawyers’ preparation for trial, because they cannot assume to

1In order to enable the classification of input cases with both boolean and multi-valued
characteristics, we will treat factors as a special case of (two-valued) dimensions. This
is the same as the approach in [15], see Section 5.2.

https://doi.org/10.1145/3594536.3595136
https://doi.org/10.1145/3594536.3595136

ICAIL 2023, June 19–23, 2023, Braga, Portugal Odekerken, Bex and Prakken

be certain of all elements of the fact situation, and hypotheticals
suggest dimensions that they can elicit from a client or prepare
to rebut. Whereas many ideas in HYPO have greatly influenced
the AI and Law field [5], this aspect seems to have attracted less
attention. In particular, in existing work on the result model (e.g.
[8, 9]), it is assumed that the characteristics of a focus case are fully
investigated.

In order to enable precedent-based reasoning with incomplete
focus cases, we introduce the notion of incomplete fact situations,
which express not only the certain characteristics of a case, but
also the uncertain ones. An incomplete fact situation has a set of
completions, which are the fact situations that can be obtained by
resolving all uncertainties. We refer to the enforced outcome of the
precedential constraint for a particular completion as its justification
status. Then, we define stability for case-based reasoning, where
incomplete fact situations are called stable if each completion has
the same justification status. For those incomplete fact situations
that are not stable, we study the task of identifying relevance: which
uncertainties should be resolved in order to make the case stable?2

The notions of justification, stability and relevance can be ex-
ploited in human-in-the-loop decision support systems: if an in-
complete fact situation is stable, then no further investigation is
required. Otherwise, relevant updates reveal which dimensions
should be investigated further. This application requires that the
tasks of identifying stability status and relevant uncertainties are
performed efficiently, even if there is a lot of uncertainty on the
value of dimensions. This is not trivial: we will show that these tasks
are situated in high complexity classes. However, under a particular
assumption, the source of this complexity disappears and the tasks
can be performed in polynomial time. As a final contribution, we de-
scribe efficient and scalable algorithms for identifying justification,
stability and relevance. Implementations of the algorithms and full
proofs can be found at https://git.science.uu.nl/D.Odekerken/lcbr.

OutlineWe start by recalling some preliminaries in Section 2.
Subsequently, we define the notions of justification, stability and
relevance for precedent-based reasoning in Section 3. We then show
in Section 4 how algorithms for these tasks can be applied in prac-
tice in human-in-the-loop decision support. Practical applications
require efficient algorithms, which we discuss in Section 5. Related
work is discussed in Section 6, after which we conclude in Section 7.

2 PRELIMINARIES
Before formally defining the notions of justification, stability and
relevance, we recall the definitions of fact situations, cases and the
notion of precedential constraint. In order to define these formally,
we introduce the notion of a domain. This is the set of all dimensions
related to the cases about which we want to reason.

Definition 1 (Domain). Let 𝒟 be a set of dimensions, where a
dimension is a tuple 𝑑 = (𝑉 , ≤PRO, ≤CONTRA) such that:

• 𝑉 is a set of values that can be assigned to 𝑑 ; and
• ≤PRO and ≤CONTRA are two partial orders on𝑉 such that 𝑣 ≤PRO

𝑣 ′ iff 𝑣 ′ ≤CONTRA 𝑣 .
2The idea of defining a stability status and relevance notion, based on possible future
information updates, was developed in other settings as well: [11] study stability for
ASPIC+ argumentation theories with an incomplete knowledge base, whereas [12]
define stability and relevance for incomplete (abstract) argumentation frameworks.
[7] define stability for Defeasible Denotic Logic theories.

We refer to𝒟 as the domain. The notation𝑉 (𝒟, 𝑑) refers to the set of
values that can be assigned to the dimension 𝑑 in domain 𝒟.

Example 1. An example of a dimension related to the classification
of web shops is complaints = (𝑉 , ≤PRO, ≤CONTRA), the number of com-
plaints submitted against a web shop, where complaints can take any
natural number (including 0) as a value and the higher the value as-
signed to complaints in a case, themore CONTRA this case. Formally:
𝑉 = N, ≤PRO = ≥ and ≤CONTRA = ≤. Another example of a dimen-
sion, which can only have two values, is trustmark = ({0, 1}, ≤, ≥).
Note that high values for trustmark should be interpreted differently
than high values for complaints: for trustmark, higher values are
considered more PRO whereas higher values for complaints are con-
sidered more CONTRA, as registration at a trustmark company makes
a web shop more trustworthy.

Note that in this approach, factors are seen as a special case of
dimensions. A fact situation is then a combination of dimensions
with corresponding values, as defined next. Note that we require
each fact situation to be assigned a value for each dimension.

Definition 2 (Fact situation). A fact situation 𝑐 within a do-
main 𝒟 is a set 𝐷 of value assignments to all dimensions in 𝒟. A
value assignment is a pair (𝑑, 𝑣) where 𝑑 ∈ 𝒟 and 𝑣 ∈ 𝑉 (𝒟, 𝑑). The
notation 𝑣 (𝑑, 𝑐) denotes the value of dimension 𝑑 in fact situation 𝑐 .

Based on the dimensions of the fact situation, an outcome can
be assigned. A fact situation paired with the outcome is a case.

Definition 3 (Case). Within a domain 𝒟, a case is a (𝑐, 𝑜)-pair,
where 𝑐 is a fact situation within the domain 𝒟 and 𝑜 is the assigned
outcome of the case, which can be either PRO or CONTRA.

We then refer to a set of cases as a case base.

Definition 4 (Case base). A case base 𝒞 within a domain 𝒟 is
a set of cases within 𝒟.

Example 2. Table 1 gives an example of a case base, consisting of
three cases, in the web shop classification domain.

Based on the ordering of dimension values, cases can be com-
pared to each other under some conditions, which are specified in
the following definition, adapted from [9]’s Definition 12. The idea
is that a case with dimensions with values that are “at least as PRO”
as a the values in case that is already assigned a PRO outcome is
constrained to be PRO. Similarly, a case that is at least as CONTRA
as a case with CONTRA outcome is assigned to be CONTRA.

Definition 5 (Strength for a side). Let 𝑐1 and 𝑐2 be two fact
situations within some domain 𝒟. Then 𝑐1 is at least as strong as 𝑐2
for the side PRO – written 𝑐1 ≥PRO 𝑐2 – iff for all 𝑑 ∈ 𝒟: 𝑣 (𝑑, 𝑐1) ≥PRO

𝑣 (𝑑, 𝑐2). Analogously, 𝑐1 is at least as strong as 𝑐2 for the side CONTRA
(𝑐1 ≥CONTRA 𝑐2) iff for all 𝑑 ∈ 𝒟: 𝑣 (𝑑, 𝑐1) ≥CONTRA 𝑣 (𝑑, 𝑐2).

Using the cases from the case base, in specific situations the
outcome of a new fact situation can be predicted (“forced”) based
on the so-called a fortiori constraint [8].

Definition 6 (A fortiori constraint). Let 𝒞 be a case base
and 𝑐 a fact situation. Then 𝑐 is forced towards outcome PRO by 𝒞 iff
there is some (𝑐′, PRO) in 𝒞 such that 𝑐 ≥PRO 𝑐

′; 𝑐 is forced towards
outcome CONTRA by 𝒞 iff there is some (𝑐′,CONTRA) in 𝒞 such that
𝑐 ≥CONTRA 𝑐

′.

https://git.science.uu.nl/D.Odekerken/lcbr

Justification, stability and relevance for case-based reasoning with incomplete focus cases ICAIL 2023, June 19–23, 2023, Braga, Portugal

trustmark terms fake_payment_option complaints outcome
({0, 1}, ≤, ≥) ({0, 1}, ≤, ≥) ({0, 1}, ≥, ≤) (N, ≥, ≤)

c1 1 1 1 10 PRO
c2 0 0 1 5 CONTRA
c3 0 1 1 2 CONTRA

Table 1: Example case base in the web shop classification domain, where columns represent dimensions and rows represent
cases. The values in the table correspond to the dimension values assigned to the cases.

Example 3. Consider the case base 𝒞 from Table 1 and suppose
that we have a new case c4 which is the same as case c1, except that
only 3 complaints have been submitted (so 𝑣 (complaints, 𝑐4) = 3).
As complaints is a dimension with ≥PRO = ≤, c4 is at least as strong
as c1 for the side PRO, so c4 is forced towards outcome PRO by 𝒞.

Note that a new case only has a forced outcome if there is a
precedent in the case base for which the a fortiori constraint applies.

3 JUSTIFICATION, STABILITY AND
RELEVANCE

We introduce the notions of justification, stability and relevance in
this and the following two sections.

3.1 Justification
The notion of justification directly uses the a fortiori constraint to
assign an outcome to focus cases, i.e. any (new) fact situation that
is not yet assigned an outcome, based on the case base.

Definition 7 (Justification status). Let 𝒞 be a case base and
𝑐 a fact situation. Then the justification status of 𝑐 given 𝒞 is:

• PRO if 𝑐 is forced towards outcome PRO by 𝒞;
• CONTRA if 𝑐 is forced towards outcome CONTRA by 𝒞;
• UNDECIDED otherwise.

Note that there is always only one justification status under the
assumption that the case base is consistent. In general, this is quite
a strong assumption [13], but for applications in human-in-the-
loop decision support we consider it to be reasonable as users have
control on the case base; for further discussion, see Section 4.

For any focus case 𝑐 , the justification status w.r.t. the case base
𝒞 can be determined in polynomial time using the following proce-
dure: iterate over all cases in the case base, and for each case (𝑐′, 𝑜)
in 𝒞 check if 𝑐 is forced towards outcome 𝑜 by 𝑐′. If this applies,
return the justification status 𝑜 ; otherwise, return UNDECIDED.

3.2 Stability
The algorithm from the previous section can be used for deciding
the justification status of new cases for which the dimension values
of the case are certain. In practice, this is not always the case.
Returning to our running example on the web shop classification
problem, consider an application in which some, but not all, of the
dimensions are extracted automatically with reasonable accuracy.

Example 4. Consider the dimension terms = ({0, 1}, ≤, ≥), stat-
ing that a web shop contains a terms and conditions page. This dimen-
sion can be extracted automatically by searching for specific links in
the html code. However, it is possible that this automatic procedure
has failed to detect some page and therefore assiged the wrong value.

Other dimensions cannot be extracted automatically at all. This
is, for example, the case for the dimension fake_payment_option =

({0, 1}, ≥, ≤), which states that the web shop displays a safe payment
option on one of its web pages, but it is not actually possible to pay
for a product with this method. This dimension cannot be determined
automatically, as it requires starting the payment procedure.

This example shows that an imperfect (but pragmatic) analysis
can cause incomplete knowledge of the fact situation, in which we
would like to keep multiple values into account for specific dimen-
sions. In order to enable explicit representation of these possible
values, we introduce the notion of an incomplete fact situation.

Definition 8 (Incomplete fact situation). An incomplete fact
situation 𝑐 within a domain 𝒟 is a tuple 𝑐 = (𝐷,𝐷?) where:

• 𝐷 is the assignment of a value for each dimension: for each
𝑑 = (𝑉 , ≤PRO, ≤CONTRA) in 𝒟 it contains at most one tuple
(𝑑, 𝑣) where 𝑣 ∈ 𝑉 (𝒟, 𝑑) is the current value assignment. The
notation 𝑣 (𝑑, 𝑐) denotes the current value of dimension 𝑑 in
incomplete fact situation 𝑐 , which may be undefined; and

• 𝐷? is the assignment of a possible value set for each dimen-
sion: for each 𝑑 = (𝑉 , ≤PRO, ≤CONTRA) in 𝒟 it contains a tuple
(𝑑,𝑉𝑝) where 𝑉𝑝 ⊆ 𝑉 (𝒟, 𝑑) is the set of possible values. The
notation 𝑉𝑝 (𝑑, 𝑐) denotes the set of possible dimension values
of dimension 𝑑 in incomplete fact situation 𝑐 . For each dimen-
sion 𝑑 ∈ 𝒟, 𝑉𝑝 (𝑑, 𝑐) must contain at least one value and if
𝑣 (𝑑, 𝑐) is defined then 𝑣 (𝑑, 𝑐) ∈ 𝑉𝑝 (𝑑, 𝑐).

Example 5. An example of an incomplete fact situation within
domain 𝒟 is 𝑐 = (𝐷, 𝐷?) with assignments 𝐷 = {(trustmark, 1),
(terms, 0), (complaints, 5)} and 𝐷? = {(trustmark, {1}), (terms,
{0, 1}), (fake_payment_option, {0, 1}), (complaints, 5)}.

This expresses the situation where the web shop is registered at the
trustmark company, no terms and conditions page has been found
(yet) and 5 complaints were submitted. There may be a fake payment
option, but this has not yet been investigated. In addition, further
investigation may result in finding terms and conditions. The other
dimensions cannot change, as they have a single possible value.

By obtaining more information on an incomplete fact situation,
the set of possible values can be reduced. At the point where all
these uncertainties are resolved, the fact situation no longer has
to be considered incomplete. Next, we define completions of an
incomplete fact situation, which are (complete) fact situations that
can be obtained by selecting a single value from the set of possible
values for each dimension.

Definition 9 (Completions). Given an incomplete fact situation
𝑐 = (𝐷, 𝐷?), a completion is a fact situation 𝑐′ = 𝐷∗ such that for
each (𝑑, 𝑣) ∈ 𝐷∗: 𝑣 ∈ 𝑉𝑝 (𝑑, 𝑐).

ICAIL 2023, June 19–23, 2023, Braga, Portugal Odekerken, Bex and Prakken

Example 6. A completion of the incomplete fact situation in Exam-
ple 5 is 𝑐′ = {(trustmark, 1), (terms, 1), (fake_payment_option,
0), (complaints, 5)}.

Even though a focus case may have an incomplete fact situation,
sometimes it is still possible to establish the justification status for
any completion, since all completions have the same justification
status. This is interesting as it implies that it is not necessary to
further investigate the yet uncertain dimension values. To identify
these situations, we introduce the notion of stability status.

Definition 10 (Stability status). Let 𝒞 be a case base and 𝑐 an
incomplete fact situation. Then the stability status of 𝑐 given 𝒞 is:

• Stable-PRO if the justification status of each completion 𝑐′ of 𝑐
given 𝒞 is PRO;

• Stable-CONTRA if the justification status of each completion
𝑐′ of 𝑐 given 𝒞 is CONTRA;

• Stable-UNDECIDED if the justification status of each comple-
tion 𝑐′ of 𝑐 given 𝒞 is UNDECIDED; and

• Unstable otherwise.

Example 7. Consider in the web shop classification domain 𝒟 the
incomplete fact situation 𝑐 = (𝐷,𝐷?) where𝐷? = {(trustmark, {1}),
(terms, {1}), (fake_payment_option, {0, 1}), (complaints, 4)}.

Let 𝒞 be the case base from Table 1. Then 𝑐 is Stable-PRO w.r.t. 𝒞,
because both completions of 𝑐 are PRO w.r.t. 𝒞.

3.3 Relevance
If an incomplete fact situation is Stable-PRO, Stable-CONTRA or
Stable-UNDECIDED, it is not necessary to investigate the possible
dimension values to be certain on the justification status. Another
possibility is that the incomplete fact situation is Unstable. Then
there are some dimensions for which it is still relevant to investigate
if some of their possible values can be excluded. In this section, we
define these relevant updates.

In order to do so, we first need the additional notions of par-
tial completions and minimal stable partial completions. A partial
completion is, just like a completion, some notion of refinement of
an incomplete focus case. However, a difference is that in a partial
completion, part of the information may still be uncertain, whereas
in a completion the exact value for each of the dimensions is certain.

Definition 11 (Partial completion). Within a domain𝒟, given
an incomplete fact situation 𝑐 = (𝐷, 𝐷?), a partial completion is an
incomplete fact situation 𝑐′ = (𝐷′, 𝐷?′) such that:

• for each (𝑑, 𝑣) ∈ 𝐷′: 𝑣 ∈ 𝑉𝑝 (𝑑, 𝑐); and
• for each (𝑑,𝑉 ′

𝑝) ∈ 𝐷?′: 𝑉 ′
𝑝 ⊆ 𝑉𝑝 (𝑑, 𝑐).

We denote all partial completions of some incomplete fact situation 𝑐
by 𝐹 (𝑐). Note that for each 𝑐 , 𝑐 ∈ 𝐹 (𝑐).

Partial completions and completions are related in the following
way: for each completion 𝑐′ = 𝐷′ of some incomplete focus case
𝑐 , there is some partial completion (𝐷′, 𝐷?) ∈ 𝐹 (𝑐) where 𝐷? =

{(𝑑, {𝑣}) | (𝑑, 𝑣) ∈ 𝐷′}. Using this notion of partial completions,
we then introduce minimal stable partial completions.

Definition 12 (Minimal stable partial completions). Let 𝒞
be a case base and let 𝑐 be an incomplete fact situation. Let 𝑗 be a
justification status (PRO, CONTRA or UNDECIDED). Then 𝑐′ ∈ 𝐹 (𝑐)
is a minimal stable- 𝑗 partial completion w.r.t. 𝒞 and 𝑐 iff:

• 𝑐′ is Stable- 𝑗 given 𝒞; and
• there is no partial completion 𝑐′′ ∈ 𝐹 (𝑐) \ {𝑐′} such that 𝑐′′ is
Stable- 𝑗 given 𝒞 and 𝑐′ ∈ 𝐹 (𝑐′′).

Example 8. Consider in the web shop classification domain 𝒟 the
incomplete fact situation 𝑐 = (𝐷,𝐷?) where:𝐷? = {(trustmark, {0}),
(terms, {0, 1}), (fake_payment_option, {0, 1}), (complaints, {6})}.

Let 𝒞 be the case base from Table 1. Then the incomplete fact sit-
uation 𝑐′ = (∅, 𝐷?′) where 𝐷?′ = {(trustmark, {0}), (terms, {0}),
(fake_payment_option, {1}), (complaints, {6})} is a partial com-
pletion that is Stable-CONTRA. Another partial completion that is
Stable-CONTRA is 𝑐′′ = (∅, 𝐷?′′) where 𝐷?′′ = {(trustmark, {0}),
(terms, {0, 1}), (fake_payment_option, {1}), (complaints, {6})}.

Given that 𝑐′ ∈ 𝐹 (𝑐′′) and 𝑐′ ≠ 𝑐′′, 𝑐′′ is a minimal stable- 𝑗
partial completion w.r.t. 𝒞 and 𝑐 , while 𝑐′ is not.

Next, we define relevant updates, which are those updates that
lead towards a minimal stable partial completion.

Definition 13 (Relevance). Within some domain 𝒟, let 𝒞 be a
case base and let 𝑐 = (𝐷, 𝐷?) be an incomplete fact situation. Let 𝑗
be a justification status (PRO, CONTRA or UNDECIDED). Then for
a given dimension 𝑑 ∈ 𝒟, the removal of possible value 𝑣 ∈ 𝑉𝑝 (𝑑, 𝑐)
is 𝑗-relevant w.r.t. 𝒞 and 𝑐 iff there is some minimal stable- 𝑗 partial
completion 𝑐′ = (𝐷′, 𝐷?′) w.r.t. 𝒞 and 𝑐 such that 𝑣 ∉ 𝑉𝑝 (𝑑, 𝑐′).

Example 9. We reconsider the domain 𝒟, case base 𝒞, incomplete
fact situation 𝑐 and minimal stable- 𝑗 partial completions from Ex-
ample 8. Given that 𝑐′′ was a minimal stable partial completion
where 0 ∉ 𝑉𝑝 (fake_payment_option, 𝑐′′), the removal of 0 for
fake_payment_option is CONTRA-relevant w.r.t. 𝒞 and 𝑐 .

Updates can have multiple relevance statuses at the same time.
We illustrate this in the following example.

Example 10. Let𝒟 = {𝑑1} be a domain with 𝑑1 = ({1, 2, 3}, ≤, ≥)
and 𝒞 is a case base {(𝑐1, PRO), (𝑐2, CONTRA)} where 𝑐1 = {(𝑑1, 3)}
and 𝑐2 = {(𝑑1, 1)}. Let 𝑐 = (𝐷,𝐷?) be an incomplete fact situation
with 𝐷? = {(𝑑1, {1, 2, 3})}. Then the minimal stable-PRO partial
completion is ({(𝑑1, 3)}, {(𝑑1, {3})}); the minimal stable-CONTRA
partial completion is ({(𝑑1, 1)}, {(𝑑1, {1})}) and the minimal stable-
UNDECIDED partial completion is ({(𝑑1, 2)}, {(𝑑1, {2})}). Conse-
quently, the removal of value 1 for 𝑑1 is both PRO- and UNDECIDED-
relevant, whereas the removal of value 3 is both CONTRA- and
UNDECIDED-relevant and the removal of value 2 is both PRO- and
CONTRA-relevant.

However, for specific dimensions the removal of a value cannot
be both PRO- and CONTRA-relevant. This applies in particular for
dimensions that can have two values that are comparable to each
other by the given ordering. We formally prove this in the following
proposition.

Proposition 1. For any case base 𝒞, incomplete fact situation 𝑐
and dimension 𝑑 such that 𝑑 = ({𝑣1, 𝑣2}, ≤PRO, ≤CONTRA) and ≤PRO=

{(𝑣1, 𝑣1), (𝑣1, 𝑣2), (𝑣2, 𝑣2)}, the removal of some possible value 𝑣 for
𝑑 cannot be both PRO- and CONTRA-relevant.

Proof. Suppose that we are given a case base 𝒞, incomplete fact
situation 𝑐 and dimension 𝑑 such that 𝑑 = ({𝑣1, 𝑣2}, ≤PRO, ≤CONTRA)
and value 𝑣 ∈ {𝑣1, 𝑣2}.

Justification, stability and relevance for case-based reasoning with incomplete focus cases ICAIL 2023, June 19–23, 2023, Braga, Portugal

(1) Suppose that removal of 𝑣 for 𝑑 is PRO-relevant w.r.t. 𝒞 and 𝑐 .
First, we show that 𝑣 = 𝑣1: suppose, towards a contradiction,
that 𝑣 = 𝑣2. Then there is a minimal stable-PRO partial com-
pletion 𝑐1 = (𝐷,𝐷?) w.r.t. 𝒞 and 𝑐 such that 𝑣2 ∉ 𝑉𝑝 (𝑑, 𝑐1).
Then𝑉𝑝 (𝑑, 𝑐1) = {𝑣1} and for each completion 𝑐2 of 𝑐1, there
is some case (𝑐′, PRO) ∈ 𝐶 such that 𝑐′ ≤PRO 𝑐2. Now con-
struct 𝑐3 that equals 𝑐1, except for the possible values for
𝑑 : 𝑉𝑝 (𝑑, 𝑐3) = {𝑣1, 𝑣2}. Note that 𝑐3 must be in 𝐹 (𝑐), as 𝑐1 is
a partial completion of 𝑐 and 𝑐3 is almost the same, except
that the possible values for 𝑑 also include 𝑣2, which must
have been in𝑉𝑝 (𝑑, 𝑐) as we assumed that the removal of 𝑣2 is
PRO-relevant for 𝑐 . Given that 𝑣1 ≤PRO 𝑣2, it must be that for
each completion 𝑐4 of 𝑐3, there is some completion 𝑐2 of 𝑐1
such that 𝑐2 ≤PRO 𝑐4, hence there is some case (𝑐′, PRO) ∈ 𝐶

such that 𝑐′ ≤PRO 𝑐4. But then 𝑐1 was not minimal, as 𝑐1 is a
partial completion of 𝑐3; contradiction.

(2) If the removal of 𝑣 for 𝑑 is CONTRA-relevant w.r.t. 𝒞 and 𝑐
then 𝑣 = 𝑣2 (analogous to the proof in item 1).

Given that only the removal of 𝑣1 for 𝑑 can be PRO-relevant,
while only the removal of 𝑣2 for 𝑑 can be CONTRA-relevant w.r.t.
𝒞 and 𝑐 and 𝑉𝑝 (𝑑, 𝑐) = {𝑣1, 𝑣2}, there can be no 𝑣 such that the
removal of 𝑣 is both PRO- and CONTRA-relevant w.r.t. 𝒞 and 𝑐 . □

Finally, we prove that iteratively performing 𝑗-relevant updates
to any incomplete fact situation 𝑐 eventually results in a minimal
𝑗-stable partial completion, provided that 𝑐 has a completion with
justification status 𝑗 .

Proposition 2. For any case base 𝒞, incomplete fact situation 𝑐
and justification status 𝑗 , let 𝜙 𝑗 be an arbitrary function from 𝐹 (𝑐) to
𝐹 (𝑐) such that, for a given 𝑐′ ∈ 𝐹 (𝑐):

(1) if there is some 𝑑 for which there is some 𝑣 such that removing
𝑣 is 𝑗-relevant w.r.t. 𝒞 and 𝑐′, then 𝜙 𝑗 (𝑐′) returns a partial
completion 𝑐′′ of 𝑐′ such that 𝑣 ∉ 𝑉𝑝 (𝑑, 𝑐′′) while for all 𝑑′
such that 𝑑′ ≠ 𝑑 : 𝑉𝑝 (𝑑′, 𝑐′′) = 𝑉𝑝 (𝑑′, 𝑐′).

(2) otherwise, 𝜙 𝑗 (𝑐′) = 𝑐′.
Then for any partial completion 𝑐′ ∈ 𝐹 (𝑐) that has a completion that
is 𝑗 w.r.t. 𝒞, there is some minimal stable- 𝑗 partial completion 𝑐′′ that
can be obtained within a finite number 𝑛 of applications of 𝜙 𝑗 (so
𝜙𝑛
𝑗
(𝜙𝑛−1

𝑗
(. . . 𝜙1

𝑗
(𝑐′) . . .)) = 𝑐′′).

Proof. For any case base 𝒞 in domain 𝒟, incomplete fact situa-
tion 𝑐 and justification status 𝑗 , let 𝜙 𝑗 be an arbitrary function as
specified above and suppose that 𝑐′ ∈ 𝐹 (𝑐) has a completion that is
𝑗 w.r.t. 𝒞. An upper bound on the number of iterations to reach a
fixed point is𝑇 = Σ𝑑∈𝒟 (|𝑉𝑝 (𝑑, 𝑐′) | − 1): after𝑇 iterations, no value
can be removed from any dimension, as there is only one possible
value for each dimension. We prove by induction that, after the 𝑖’th
iteration, 𝜙𝑖

𝑗
(𝑐′) has a completion that is 𝑗 w.r.t. 𝒞. For 𝑖 = 0, this fol-

lows from the assumption that 𝑐′ has a completion that is 𝑗 w.r.t. 𝒞.
Assuming the induction hypothesis for 𝑖 , the proof for (𝑖+1) follows
from the definition of 𝜙 𝑗 : given that 𝑐𝑖 = 𝜙𝑖

𝑗
(𝜙𝑖−1

𝑗
(. . . 𝜙1

𝑗
(𝑐′) . . .))

has a completion that is 𝑗 , there must be some minimal stable- 𝑗
partial completion w.r.t. 𝒞 and 𝑐′. Then there are two possibilities:

• 𝑐𝑖 is a minimal stable- 𝑗 partial completion w.r.t. 𝒞 and 𝑐 . Then
𝜙𝑖+1
𝑗

(𝑐𝑖) = 𝑐𝑖 . From the induction hypothesis, it follows that
𝜙𝑖+1
𝑗

(𝑐𝑖) has a completion that is 𝑗 w.r.t. 𝒞.

• Alternatively, there is some 𝑑 and 𝑣 such that removal of 𝑣
for 𝑑 is 𝑗-relevant w.r.t. 𝒞 and 𝑐 and 𝜙𝑖+1

𝑗
(𝑐𝑖) is obtained by

removing 𝑣 from the possible values for 𝑑 . Given that remov-
ing 𝑣 is 𝑗-relevant, there is some minimal stable- 𝑗 partial
completion of 𝑐𝑖 that does not have 𝑣 in its possible values.
Then this partial completion is still a partial completion of
𝜙 𝑗 (𝑐𝑖), so 𝜙𝑖+1𝑗

(𝑐𝑖) has a completion that is 𝑗 w.r.t. 𝒞.

After 𝑇 iterations, 𝜙𝑇
𝑗
(𝑐𝑖) has a completion that is 𝑗 w.r.t. 𝒞 and

there can be no value that is 𝑗-relevant to remove for any dimension.
Then 𝜙 𝑗 (𝑐𝑖) is a minimal stable- 𝑗 completion w.r.t. 𝒞. □

In the next section, we show how the property proven in Proposi-
tion 2 can be used in human-in-the-loop decision support systems.

4 APPLICATION IN HUMAN-IN-THE-LOOP
DECISION SUPPORT

Having defined justification, stability and relevance, we now il-
lustrate how these notions can be exploited in decision support
systems that can be used by human analysts to make consistent
decisions on incomplete focus cases. This has been implemented in
a human-in-the-loop decision support system for web shop classifi-
cation at a national police force [10] (albeit in a simplified version).
From practical experience, we know that for many, though not all,
dimensions the values can be extracted automatically. In modelling
the incomplete fact situation 𝑐 = (𝐷, 𝐷?), we take the availability
and quality of automatic extraction methods into account:

• For dimensions 𝑑 , the value 𝑣 can be extracted accurately.
For example, the value of complaints is obtained from the
complaint registration system and the value of trustmark
can be requested directly from the trustmark company. In
these cases, we include (𝑑, 𝑣) to 𝐷 and (𝑑, {𝑣}) to 𝐷?.

• For other dimensions, the automatic extraction procedure is
imperfect (e.g. terms). Then we include (𝑑, 𝑣) to 𝐷 , but also
add alternative possible values to 𝑉𝑝 (𝑑, 𝑐).

• Alternatively, no automatic procedure is possible for a di-
mension (e.g. fake_payment_option). In that case, 𝐷 does
not contain a value for 𝑑 and 𝑉𝑝 (𝑑, 𝑐) = 𝑉 (𝒟, 𝑑).

In the remainder of this section, we show how the analyst uses
the system to make a consistent and well-informed decision on 𝑐 ,
without spending more resources than necessary. The implemented
system has more than four dimensions, but for brevity we only
refer to the domain𝒟 of our running example and case base 𝒞 from
Table 1.

A high-level overview of the decision support system is illus-
trated in Figure 1. If all dimensions have a value in 𝐷 , the analyst
can obtain the justification status, which can be seen as an initial
advice. In situations where some 𝑑 ∈ 𝒟 still has multiple possible
values (|𝑉𝑝 (𝑑, 𝑐) > 1|), the analyst also obtains the stability status. If
this status turns out to be Unstable, then there is at least one update
that would cause a change in the justification (and stability) status.
All updates causing such a change are then identified using the
algorithm for relevance and presented to the analyst. The analyst
can then choose to further investigate (some of) the dimensions
related to these updates and, after this investigation, update the in-
complete fact situation. If the analyst obtains more information on
the possible values 𝑉 ′

𝑝 to be assigned to some dimension 𝑑 where

ICAIL 2023, June 19–23, 2023, Braga, Portugal Odekerken, Bex and Prakken

Update case base

STABILITY

Notify of
relevant
updates

RELEVANCE

Update fact situation

Unstable

JUSTIFICATION
Inform

Justification status
(current advice)

InformStability status
(final advice)

Figure 1: High-level overview of the proposed human-in-
the-loop decision-making process, involving algorithms for
justification, stability and relevance identification.

(𝑑,𝑉𝑝) ∈ 𝐷?, then in the updated fact situation 𝑐′ = (𝐷′, 𝐷?′),
(𝑑,𝑉𝑝) is replaced by (𝑑,𝑉 ′

𝑝). Additionally, the value (𝑑, 𝑣 ′𝑐) in 𝐷′

may have to be changed.
After this update, the algorithms for justification and stability

(and, if necessary, relevance) can be executed again, until a stable
situation has been reached (which, by Proposition 2, will eventu-
ally happen if only relevant dimension values are removed) or the
analyst decides that further investigation on the fact situation is no
longer opportune given the available resources. At this point, the
analyst makes a decision based on 𝐷′, that is, on the current dimen-
sion values of 𝑐′, the most updated version of the incomplete fact
situation – which may or may not contain any uncertain elements.

Suppose, for example, that 𝐷 = {(trustmark, 0), (terms, 0),
(complaints, 6)} and that𝐷? = {(trustmark, {0}), (terms, {0, 1}),
(fake_payment_option, {0, 1}), (complaints, {6})}. Then 𝑐 has
CONTRA and UNDECIDED completions. Recall from Example 9
that removal of 0 for fake_payment_option is CONTRA-relevant
w.r.t. 𝒞 and 𝑐 . In addition, removal of 1 for fake_payment_option
is UNDECIDED-relevant. The analyst starts the payment procedure
and detects a fake payment option. Then 𝐷′ = {(trustmark, 0),
(terms, 0), (fake_payment_option, 1), (complaints, 6)} and𝐷?′ =
{(trustmark, {0}), (terms, {0, 1}), (fake_payment_option, {1}),
(complaints, {6})}. Given that 𝑐′ is Stable-CONTRA, further in-
vestigation is not necessary.

Subsequently, the analyst can choose to add 𝐷′ and the decided
outcome to the case base. Given our assumption that the analyst
decides consistently, we assume that the analyst’s decision is in line
with the justification status of𝐷′: if this outcome is PRO, we assume
that the analyst decides PRO; if the justification status is CONTRA,
we expect the analyst to decide CONTRA. If the justification status
is UNDECIDED, the analyst can choose either PRO or CONTRA. For
the latter situation, it is particularly interesting to add𝐷′ to the case
base: it could force other focus cases, which would initially have
the justification status UNDECIDED, to become PRO or CONTRA.

On a final note, it may occur that the analyst’s decision is incom-
patible with the justification status obtained from the case base:
that is, either the analyst decides on outcome 𝑜 = PRO while the

justification status 𝑜′ is CONTRA, or 𝑜′ is PRO while 𝑜 is CONTRA.
Such a situation can have multiple causes, including concept drift
in the interpretation of dimension values, a mistake in the decision
for an earlier case, or the new case being an outlier. In any case,
the analyst is not allowed to add the fact situation 𝐷′ with out-
come 𝑜 to the case base: that would cause the case base to become
inconsistent. The analyst then has four options:

(1) Do not add 𝐷′ with outcome 𝑜 to the case base;
(2) Remove all cases with outcome 𝑜′ that force 𝐷′ to be 𝑜′ from

the case base and then (optionally) add 𝐷′ with outcome 𝑜
to the case base;

(3) Correct the fact situations of all cases with outcome 𝑜′ that
force 𝐷′ to be 𝑜′ from the case base and then (optionally)
add 𝐷′ with outcome 𝑜 to the case base; or

(4) Correct 𝐷′, so it becomes 𝐷′′ (which is not forced to be 𝑜′)
and then add 𝐷′′ with outcome 𝑜 to the case base.

The choice between these four options is up to the analyst. By
always choosing one of these options after an incompatible decision
is made, the analyst ensures that the case base remains consistent.

5 COMPLEXITY AND ALGORITHMS
At this point we have formally introduced the notions of justifica-
tion, stability and relevance and we have shown how these notions
are applicable for human-in-the-loop decision support systems. In
Section 3.1, we described a polynomial-time procedure for deter-
mining the stability status. In this section, we will focus on the
complexity of stability and relevance. In addition, we will give al-
gorithms for these tasks and prove under which conditions these
algorithms run in polynomial time.

5.1 Computing stability
To determine the stability status of an incomplete fact situation, one
could construct all possible completions and run the justification
algorithm for each of them. However, this approach would be very
inefficient, as we illustrate with the following example.

Example 11 (Exponential blowup of naive stability algo-
rithm). Suppose that we are given some case base 𝒞 within the
domain 𝒟 and some incomplete fact situation 𝑐 within this domain.
Assume that for each 𝑑𝑖 ∈ 𝒟, 𝑑𝑖 = ({1, . . . , 6}, ≤, ≥), so each di-
mension has six possible values and higher values are considered to
be more PRO. Now we consider the number of calls to the justifica-
tion algorithm for a varying number of dimensions. First suppose
that |𝒟 | = 1 and that 𝑐 = (𝐷, 𝐷?) where 𝐷? = {(𝑑1, {1, . . . , 6})}.
From a computational perspective, this is a worst case scenario, as the
naive stability algorithm requires 6 calls to the justification algorithm:
one for each of the 6 completions of 𝑐 . As the number of dimensions
increases, the number of calls to the justification algorithm grows
exponentially. Suppose, for example, that |𝒟 | = 3 and consider a focus
case 𝑐′ = (𝐷′, 𝐷?′) where 𝐷?′ = {(𝑑𝑖 , {1, . . . , 6}) | 𝑖 ∈ {1, 2, 3}}. As
𝑐′ has 63 = 216 completions, the naive stability algorithm requires 216
calls to the justification algorithm. Similarly, if we have 6 dimensions
that can take 6 different values, the number of calls is 46656.

This naive approach is clearly impractical for actual applications,
in which there could be a large number of dimensions, each of
which could have many possible values. Fortunately, it is possible

Justification, stability and relevance for case-based reasoning with incomplete focus cases ICAIL 2023, June 19–23, 2023, Braga, Portugal

1 2
3

4
5 6

Figure 2: Hasse diagram of the ordering ≤′
CONTRA= {(6, 6), (6, 4),

(6, 3), (6, 2), (6, 1), (5, 5), (5, 4), (5, 3), (5, 2), (5, 1), (4, 4), (4, 3),
(4, 2), (4, 1), (3, 3), (3, 2), (3, 1), (2, 2), (1, 1)} on the set {1, . . . , 6}.

to compute the stability status in a faster way, strongly limiting
the number of calls to the justification algorithm. The problem of
deciding if an incomplete fact situation is Stable-UNDECIDED can
be solved in polynomial time, as we show next.

Proposition 3. Deciding if an incomplete fact situation is Stable-
UNDECIDED w.r.t. some case base is in P.

Proof. For a given incomplete fact situation 𝑐 and case base 𝒞,
𝑐 is Stable-UNDECIDED w.r.t. 𝒞 iff for each case (𝑐′, 𝑜) ∈ 𝒞 there
is some dimension 𝑑 with value 𝑣 ∈ 𝑣 (𝑑, 𝑐′) such that there is no
𝑣𝑝 ∈ 𝑉𝑝 (𝑑, 𝑐) such that 𝑣𝑝 ≥𝑜 𝑣 . This can be checked in polynomial
time, by iterating over the cases in 𝒞. □

For deciding if an incomplete fact situation 𝑐 is Stable-PRO,
Stable-CONTRA or Unstable, we use a different strategy. As we
will prove later in this section, for these stability statuses it suffices
to only consider those completions that are most likely to have a
different justification status. Informally, this works as follows:

• To determine if 𝑐 is Stable-PRO, construct the “most CON-
TRA completions” by choosing the “most CONTRA” values
for each dimension within the set of possible values. If the
justification algorithm classifies each of the resulting fact
situations as PRO, then 𝑐 was Stable-PRO.

• To determine if 𝑐 is Stable-CONTRA, construct the “most
PRO completions”. If these are all assigned CONTRA, then 𝑐
was Stable-CONTRA.

• In order to decide if 𝑐 is Unstable, construct both all most
PRO and all most CONTRA completions and compute their
justification statuses. If not all cases are assigned the same
status, then 𝑐 was Unstable.

Formally, these most PRO or CONTRA completions are con-
structed as follows:

Definition 14 (Extreme completions). Let 𝑐 = (𝐷, 𝐷?) be
an incomplete fact situation within a domain 𝒟. For each of the
dimensions 𝑑𝑖 ∈ 𝒟, let the most PRO values of this dimension be
MPD(𝑑𝑖 , 𝑐) = {𝑉 ′

𝑝 ⊆ 𝑉𝑝 (𝑑, 𝑐) | for each 𝑣 ′𝑝 ∈ 𝑉 ′
𝑝 : for each 𝑣𝑝 ∈

𝑉𝑝 : if 𝑣𝑝 ≥PRO 𝑣
′
𝑝 then 𝑣 ′𝑝 ≥PRO 𝑣𝑝 }. The set of most PRO completions

of 𝑐 is MP(𝑐) = {(𝑑𝑖 , 𝑣𝑖) | 𝑑𝑖 ∈ 𝒟, 𝑣𝑖 ∈ MPD(𝑑𝑖 , 𝑐)} Similarly, for
each of the dimensions 𝑑𝑖 ∈ 𝒟, let the most CONTRA values be
MCD(𝑑𝑖 , 𝑐) = {𝑉 ′

𝑝 ⊆ 𝑉𝑝 (𝑑, 𝑐) | for each 𝑣 ′𝑝 ∈ 𝑉 ′
𝑝 : for each 𝑣𝑝 ∈

𝑉𝑝 : if 𝑣𝑝 ≥CONTRA 𝑣
′
𝑝 then 𝑣 ′𝑝 ≥CONTRA 𝑣𝑝 }. The set of most CONTRA

completions of 𝑐 is MC(𝑐) = {(𝑑𝑖 , 𝑣𝑖) | 𝑑𝑖 ∈ 𝒟, 𝑣𝑖 ∈ MCD(𝑑𝑖 , 𝑐)}.

Example 12. Consider a dimension with six possible values 𝑑 =

({1, . . . , 6}, ≤′
PRO, ≤

′
CONTRA) where ≤

′
CONTRA is the ordering illustrated

in Figure 2. Let 𝑐 = ({(𝑑, 1)}, {(𝑑, {1, . . . , 6})}) be an incomplete fact
situation in domain {𝑑}. Then MPD(𝑑, 𝑐) = {5, 6} and MCD(𝑑, 𝑐) =
{1, 2}; MP(𝑐) = {{(𝑑, 5)}, {(𝑑, 6)}} andMC(𝑐) = {{(𝑑, 1)}, {(𝑑, 2)}}.

In the following proposition, we prove that checking the justi-
fication status of these extreme completions suffices to determine
the stability status of any incomplete fact situation.

Proposition 4. Given a case base 𝒞 and an incomplete fact situa-
tion 𝑐 = (𝐷, 𝐷?):

(1) 𝑐 is Stable-PRO given 𝒞 iff each MC(𝑐) is PRO given 𝒞;
(2) 𝑐 is Stable-CONTRA given 𝒞 iff each MP(𝑐) is CONTRA given

𝒞; and
(3) 𝑐 is Unstable given 𝒞 iff the justification status of some MP(𝑐)

does not equal the justification status of some MC(𝑐) given 𝒞.

Proof. The proof for items 1 and 2 from left to right follow
directly from Definition 10 for stability: for a given justification
status 𝑗 (PRO or CONTRA) such that 𝑐 is Stable- 𝑗 given 𝒞, it must
be that each completion, including each completion in MC(𝑐) and
MP(𝑐), has the status 𝑗 given 𝒞.

For item 1 from right to left, suppose that each 𝑐∗ in MC(𝑐)
is PRO given 𝒞 and consider an arbitrary completion 𝑐′ of 𝑐 . By
Definition 14, there must be some 𝑐∗ ∈ MC(𝑐) such that 𝑐∗ ≤PRO 𝑐

′.
Since 𝑐∗ is PRO given 𝒞, there must be some (𝑐′′, PRO) ∈ 𝐶 such
that 𝑐′′ ≤PRO 𝑐∗. By transitivity of ≤PRO, 𝑐′′ ≤PRO 𝑐′, so 𝑐′ is PRO
given 𝒞. Since 𝑐′ was chosen arbitrarily, 𝑐 must be Stable-PRO given
𝒞. The proof for item 2 from right to left is analogous.

Finally consider item 3. The right to left part follows directly from
Definition 10 for stability. For the proof from left to right, suppose
that 𝑐 is Unstable given 𝒞. Then at least one of the following is true:

• There is some completion 𝑐1 of 𝒞 such that 𝑐1 is PRO given 𝒞
and there is some completion 𝑐2 of 𝒞 such that 𝑐2 is not PRO
given 𝒞. As there must be some 𝑐∗ ∈ MP(𝑐) such that 𝑐1 ≤PRO

𝑐∗, this 𝑐∗ must be PRO given 𝒞. Given that 𝑐2 is not PRO
and there must be some 𝑐− ∈ MC(𝑐) such that 𝑐− ≤PRO 𝑐2,
this 𝑐− cannot be PRO given 𝒞. So the justification statuses
of 𝑐∗ ∈ MP(𝑐) and 𝑐− ∈ MC(𝑐) are not equal.

• There is some completion 𝑐1 of 𝒞 such that 𝑐1 is CONTRA
given 𝒞 and there is some completion 𝑐2 of 𝒞 such that 𝑐2
is not CONTRA given 𝒞. Analogously, there must be some
𝑐− ∈ MC(𝑐) such that 𝑐− ≤PRO 𝑐1, which must be CONTRA
and some 𝑐∗ ∈ MP(𝑐) such that 𝑐2 ≤PRO 𝑐

∗, which cannot be
CONTRA given 𝒞. So 𝑐∗ ∈ MP(𝑐) and 𝑐− ∈ MC(𝑐) do not
have equal justification statuses. □

Using this result, the stability status of an incomplete fact situa-
tion 𝑐 can be computed in a more efficient way, since it suffices to
only call the justification algorithm for the most extreme comple-
tions in MP(𝑐) ∪MC(𝑐).

Example 13. Reconsider the case base 𝒞 and domain𝒟 from Exam-
ple 11, but now suppose that for each 𝑑𝑖 ∈ 𝒟, 𝑑𝑖 = ({1, . . . , 6}, ≤′

PRO
, ≤′

CONTRA) where ≤
′
CONTRA is defined as in Example 12 (illustrated in

Figure 2). Then the number of extreme completions |MP(𝑐) | + |MC(𝑐) |
of an incomplete focus case with all possible values for each dimension

ICAIL 2023, June 19–23, 2023, Braga, Portugal Odekerken, Bex and Prakken

is 2 |𝒟 | + 2 |𝒟 | , so the number of calls to the justification algorithm is
greatly reduced compared to the 6 |𝒟 | calls of the naive approach.

If the number of completions inMP(𝑐)∪MC(𝑐) is small compared
to the total number of completions of 𝑐 , then this stability algorithm
is much faster than the naive version. In fact, if for each dimension
𝑑 , the set 𝑉𝑝 (𝑑, 𝑐) has a single minimum and a single maximum
value, then the stability algorithm runs in polynomial time.

Proposition 5. Given a domain 𝒟 and some incomplete fact
situation 𝑐 , if for each 𝑑 ∈ 𝒟 the set 𝑉𝑝 (𝑑, 𝑐) has a single minimum
and a single maximum value, then the stability algorithm based on
extreme completions runs in polynomial time for 𝑐 .

Proof. Suppose that for each 𝑑 ∈ 𝒟, the set𝑉𝑝 (𝑑, 𝑐) has a single
minimum and a single maximum; then 𝑐 has a single element in
MP(𝑐) that is obtained by selecting the maximum possible value for
each dimension. Similarly, MC(𝑐) has a single element, obtained by
selecting the minimum possible values. Since |MP(𝑐) |+ |MC(𝑐) | = 2,
at most two calls to the polynomial algorithm for justification are
required, so the stability algorithm based on extreme completions
runs in polynomial time for 𝑐 . □

Proposition 5 implies that computing stability is fast, even for
very big inputs, if the possible values of each dimension have single
minimum and maximum. This is, for example, always the case if the
ordering on each of the dimensions is ≤ or ≥, like in our example
in the web shop classification domain.

Example 14. Consider in the web shop classification domain𝒟 the
incomplete fact situation 𝑐 = (𝐷,𝐷?) where:𝐷? = {(trustmark, {0}),
(terms, {0, 1}), (fake_payment_option, {0, 1}), (complaints, {6})}.
Then the set of most PRO completions of 𝑐 contains a single ele-
ment 𝐷′ = {(trustmark, 0), (terms, 1), (fake_payment_option,
0), (complaints, 6)}. Similarly, the set of most CONTRA comple-
tions MC(𝑐) consists of a single element 𝐷′′ = {(trustmark, 0),
(terms, 0), (fake_payment_option, 1), (complaints, 6)}.

However, the exponential blowup that occurs if the possible
dimension values have multiple maxima or minima cannot be cir-
cumvented in general, because the problem of deciding if a case is
Stable-PRO/Stable-CONTRA is CoNP-complete, as we prove next.

Proposition 6. Deciding if an incomplete fact situation is Stable-
PRO/Stable-CONTRA w.r.t. some case base is CoNP-complete.

Proof sketch. Membership in CoNP follows from the fact that
a negative instance can be verified in polynomial time, given a
completion with a different justification status as a certificate. Next,
we prove CoNP-hardness for deciding if an incomplete fact situ-
ation is Stable-PRO; the proof for Stable-CONTRA is analogous.
We reduce from the CoNP-complete problem TAUTOLOGY. Let
(𝜙,𝑋) be an instance of this problem, where 𝜙 is a formula in DNF
on the variables in 𝑋 . Now let (𝒟,𝐶, 𝑐) be the result of a trans-
formation 𝑇 (𝜙,𝑋) that is constructed as follows: for each 𝑥𝑖 ∈ 𝑋 ,
construct a dimension𝑑𝑖 with three values: {𝑣p, 𝑣n, 𝑣u} and ordering
≤PRO= {(𝑣u, 𝑣u), (𝑣u, 𝑣p), (𝑣u, 𝑣n), (𝑣p, 𝑣p), (𝑣n, 𝑣n)} and let 𝒟 be the
set of all dimensions. Construct an incomplete case 𝑐 such that for
each 𝑑𝑖 ∈ 𝒟:𝑉𝑝 (𝑑𝑖 , 𝑐) = {𝑣p, 𝑣n}. Construct case base 𝒞 with a case
(𝑐∗, PRO) for each consistent clause 𝑐′ in 𝜙 , where 𝑣 (𝑑𝑖 , 𝑐∗) = 𝑣p
if 𝑥𝑖 ∈ 𝑐′; 𝑣 (𝑑𝑖 , 𝑐∗) = 𝑣n if ¬𝑥𝑖 ∈ 𝑐′ and 𝑣 (𝑑𝑖 , 𝑐∗) = 𝑣u otherwise.

𝑇 (𝜙,𝑋) can be constructed in polynomial time and (𝜙,𝑋) is a posi-
tive instance of TAUTOLOGY iff 𝑐 is Stable-PRO w.r.t. 𝒞. □

To complete the complexity analysis of stability statuses, we
claim that the problem of deciding if an incomplete fact situation is
Unstable is NP-complete.

Proposition 7. Deciding if an incomplete fact situation is Unsta-
ble w.r.t. some case base is NP-complete.

Proof sketch. Analogous to the proof of Proposition 6, mem-
bership in NP follows from the fact that a positive instance can be
verified in polynomial time given two completions with different
justification statuses as certificates. For the NP-hardness proof, the
transformation from Proposition 6 can be used to reduce from the
NP-complete problem NON-TAUTOLOGY. □

To summarise this section, the tasks of deciding on the statuses
PRO-stable, CONTRA-stable and Unstable are inherently complex.
This could yield problems for applications with a lot of possible
dimension values. We have provided an algorithm for deciding on
these stability statuses in a relatively efficient way and proved that
this algorithm is polynomial for specific inputs. In addition, we
provided an exact polynomial algorithm for UNDECIDED-stability.

5.2 Computing relevance
In this section, we consider computational aspects of the relevance
problem. First, we will study its complexity. In order to prove an
upper bound on the complexity, we will use the property that
relevant operations can be verified by a single completion 𝑐′ of 𝑐
for which the value 𝑣 for 𝑑 causes a difference in justification status:
𝑐 has the justification status 𝑗 , but replacing 𝑑’s value by 𝑣 results
in a completion with a different justification status. Before formally
proving this property in Lemma 1, we illustrate it with an example.

Example 15. Reconsider from Example 8 the domain 𝒟, case
base 𝒞 and incomplete fact situation 𝑐 = (𝐷,𝐷?), where: 𝐷? =

{(trustmark, {0}), (terms, {0, 1}), (fake_payment_option, {0, 1}),
(complaints, {6})}. The removal of 0 for fake_payment_option is
CONTRA-relevant w.r.t. 𝒞 and 𝑐 . Indeed, 𝑐 has a completion 𝑐′ that
is CONTRA, while replacing fake_payment_option’s value by 0
results in a completion that is not CONTRA: 𝑐′ = {(trustmark, 0),
(terms, 0), (fake_payment_option, 1), (complaints, 6)}.

This property holds in general, as we show in Lemma 1.

Lemma 1. Let 𝒞 be a case base in domain 𝒟 and let 𝑐 = (𝐷, 𝐷?)
be an incomplete fact situation. Let 𝑗 be a justification status (PRO,
CONTRA or UNDECIDED). Then for a given dimension 𝑑 ∈ 𝒟, the
removal of possible value 𝑣 ∈ 𝑉𝑝 (𝑑, 𝑐) is 𝑗-relevant w.r.t. 𝒞 and 𝑐 iff
there is some completion 𝑐′ = 𝐷′ of 𝑐 such that:

• 𝑐′ is 𝑗 w.r.t. 𝒞; and
• 𝑐′′ = 𝐷′′ is not 𝑗 w.r.t. 𝒞 where 𝐷′′ is equal to 𝐷′ except for
the value of 𝑑 , which is 𝑣 . Formally: 𝐷′′ = {(𝑑′, 𝑣 (𝑑′, 𝑐′)) |
𝑑′ ∈ 𝒟 \ {𝑑}} ∪ {(𝑑, 𝑣)}.

Proof. First we prove the lemma from left to right:
(1) Suppose that the removal of 𝑣 is 𝑗-relevant w.r.t. 𝒞 and 𝑐 .
(2) Then there is a minimal stable- 𝑗 partial completion 𝑐∗ =

(𝐷∗, 𝐷?∗) w.r.t. 𝒞 and 𝑐 such that 𝑣 ∉ 𝑉𝑝 (𝑑, 𝑐∗).

Justification, stability and relevance for case-based reasoning with incomplete focus cases ICAIL 2023, June 19–23, 2023, Braga, Portugal

(3) Now construct the partial completion 𝑐∗′ from 𝑐∗ by includ-
ing 𝑣 to the possible values of 𝑑 and replacing the current
value of𝑑 by 𝑣 : 𝑐∗′ = (𝐷∗′, 𝐷?∗′)where𝐷∗′ = {(𝑑′, 𝑣 (𝑑′, 𝑐∗) |
𝑑′ ∈ 𝒟 \ {𝑑}} ∪ {(𝑑, 𝑣)} and 𝐷?∗′ = {(𝑑′,𝑉𝑝 (𝑑′, 𝑐∗)) | 𝑑′ ∈
𝒟\{𝑑}}∪{(𝑑,𝑉𝑝 (𝑑, 𝑐∗)∪{𝑣})}. Given that 𝑐∗ was a minimal
stable- 𝑗 partial completion, that 𝑐∗ ≠ 𝑐∗′ and 𝑐∗ ∈ 𝐹 (𝑐∗′), 𝑐∗′
cannot be stable- 𝑗 w.r.t. 𝒞.

(4) So there is some completion 𝑐′′ of 𝑐∗′ that is not 𝑗 w.r.t. 𝒞.
Then it must be that 𝑣 (𝑑, 𝑐′′) = 𝑣 : otherwise, 𝑐′′ would also
be a completion of 𝑐∗′ (and have the justification status 𝑗).

(5) Finally construct 𝑐′, which equals 𝑐′′ except for the value
of 𝑑 : 𝑐′ = {(𝑑′, 𝑣 (𝑑′, 𝑐′′)) | 𝑑′ ∈ 𝒟 \ {𝑑}} ∪ {(𝑑, 𝑣 (𝑑, 𝑐∗))}.
Then 𝑐′ is a completion of 𝑐∗, so 𝑐′ is 𝑗 w.r.t. 𝒞.

Then 𝑐′ (in item 5) and 𝑐′′ (in item 4) fulfill the left-to-right part
of the lemma. Next, we prove the lemma from right to left:

(1) Suppose that there is some completion 𝑐′ = 𝐷′ of 𝑐 such
that 𝑐′ is 𝑗 w.r.t. 𝒞 and 𝑐′′ = 𝐷′′ is not 𝑗 w.r.t. 𝒞 where
𝐷′′ = {(𝑑′, 𝑣 (𝑑′, 𝑐′)) | 𝑑′ ∈ 𝒟 \ {𝑑}} ∪ {(𝑑, 𝑣)}.

(2) Let 𝑐∗′ be an incomplete fact situation for which 𝑐′ is the only
completion as each dimension has one possible value: the
actual value of that dimension in 𝑐′. Formally: 𝑐∗′ = (𝐷′, 𝐷?′)
where 𝐷?′ = {(𝑑, {𝑣 ′ (𝑑, 𝑐′)}) | 𝑑 ∈ 𝒟}. Then 𝑐∗′ is a partial
completion of 𝑐 (as 𝑐′ is a completion of 𝑐) and it is stable- 𝑗
w.r.t. 𝒞 and 𝒟 (as there is a single completion which is 𝑗).

(3) This implies that there must be some minimal stable- 𝑗 partial
completion 𝑐∗ (possibly 𝑐∗′ itself) such that 𝑐∗′ ∈ 𝐹 (𝑐∗).
Note that 𝑣 ∉ 𝑉𝑝 (𝑑, 𝑐∗): if 𝑣 ∈ 𝑉𝑝 (𝑑, 𝑐∗) then 𝑐′′ would be a
completion of 𝑐∗ and therefore be 𝑗 w.r.t. 𝒞, which would
contradict our assumption. Then by Definition 13, removal
of 𝑣 is 𝑗-relevant w.r.t. 𝒞 and 𝑐 . □

Next, we use Lemma 1 to prove that relevance is in NP.

Proposition 8. For each justification status 𝑗 (PRO, CONTRA or
UNDECIDED), deciding if the removal of a possible value for a given
dimension of an incomplete fact situation is 𝑗-relevant w.r.t. some case
base is NP-complete.

Proof sketch. Membership in NP follows from Lemma 1: in
order to verify that the removal of a value for a dimension 𝑑 of an
incomplete fact situation is PRO/CONTRA/UNDECIDED-relevant
w.r.t. some case base (i.e. a positive instance of the problem), a
suitable certificate would be some completion 𝑐′ such that 𝑐′ is
𝑗 w.r.t. the case base, while replacing 𝑑’s value to 𝑣 results in a
completion 𝑐′′ that is not 𝑗 . This can be validated in polynomial time
using the algorithm for justification on both 𝑐′ and 𝑐′′. Together
with the NP-hardness proof, which we omit here due to space
restrictions, this implies that deciding relevance is NP-complete. □

Having identified the complexity of the relevance problem, we
propose an algorithm for enumerating all PRO-andCONTRA-relevant
removals, given an incomplete fact situation 𝑐 and case base 𝒞 in
domain 𝒟. Informally, this algorithm works as follows:

(1) For each case (𝑐′, 𝑜) ∈ 𝒞, construct the completions of 𝑐
that “just suffice to match” 𝑐′ and collect these cases in an
alternative case base 𝒞∗.

(2) Let 𝒞′ be a minimised version of 𝒞∗, where cases forced by
another case in 𝒞′ are removed.

(3) For each case (𝑐′, 𝑜) in 𝒞′, for each 𝑑 ∈ 𝒟 and for each
𝑣 ∈ 𝑉𝑝 (𝑑, 𝑐) such that 𝑣 ≱𝑜 𝑣 (𝑑, 𝑐′): construct an alternative
case 𝑐′′ by replacing the value of 𝑑 in 𝑐′ by 𝑣 . Store 𝑣 as an
𝑜-relevant removal if the justification status is no longer 𝑜 .

To give some intuition on this procedure: constructing 𝒞′ is
convenient as it allows us to efficiently find the completions 𝑐′ and
𝑐′′ mentioned in Lemma 1, where the justification status switches
between PRO/CONTRA and an alternative status. Next, we formally
define the minimal matching completions and minimised case base.

Definition 15 (Minimal matching values and completions).
Given an incomplete fact situation 𝑐 , case (𝑐′, 𝑜) and 𝑑 in domain 𝒟,
the set of minimal matching values is 𝑉𝑚 (𝑑, (𝑐′, 𝑜)), which consists
of all values 𝑣 in 𝑉𝑝 (𝑑, 𝑐) such that 𝑣 ≥𝑜 𝑣 (𝑑, 𝑐′) and there is no
𝑣 ′ ∈ 𝑉𝑝 (𝑑, 𝑐) such that 𝑣 ≥𝑜 𝑣 ′, 𝑣 ′ ≱𝑜 𝑣 and 𝑣 ′ ≥𝑜 𝑣 (𝑑, 𝑐′). The set
of minimal matching completions consists of all combinations of mini-
mal matching values for each dimension:𝐶𝑚 (𝑐′) = >

𝑑∈𝒟 𝑉𝑚 (𝑑, 𝑐′).

Definition 16 (Minimised case base). Given a case base 𝒞,
the minimised version is min(𝒞) where min(𝒞) = {(𝑐′, 𝑜) ∈ 𝒞 |
there is no 𝑐′′ such that (𝑐′′, 𝑜) ∈ 𝒞, 𝑐′′ ≤𝑜 𝑐′ and 𝑐′ ≰𝑜 𝑐′′}.

Example 16. Reconsider from Example 8 the domain 𝒟, case
base 𝒞 and incomplete fact situation 𝑐 = (𝐷,𝐷?), where: 𝐷? =

{(trustmark, {0}), (terms, {0, 1}), (fake_payment_option, {0, 1}),
(complaints, {6})}. For 𝑐1, there is no minimal matching completion.
For 𝑐2, the onlyminimalmatching completion is 𝑐′ = {(trustmark, 0),
(terms, 0), (fake_payment_option, 1), (complaints, 6)}. For 𝑐3, the
minimal matching completion is 𝑐′′ = {(trustmark, 0), (terms, 1),
(fake_payment_option, 1), (complaints, 6)}. The minimised ver-
sion of {(𝑐′,CONTRA), (𝑐′′,CONTRA)} is 𝒞′ = {(𝑐′′,CONTRA)}.

Then the remainder of the procedure to obtain PRO- andCONTRA-
relevant updates from this minimal case base 𝒞′ is as follows:

(1) For each (𝑐′, PRO) ∈ 𝒞′, for each 𝑑 ∈ 𝒟 and for each 𝑣 ∈
𝑉𝑝 (𝑑, 𝑐) such that 𝑣 ≱PRO 𝑣 (𝑑, 𝑐′):
(a) Construct 𝑐′′ by replacing the value of 𝑑 in 𝑐′ by 𝑣 .
(b) If the justification status of 𝑐′′ is not PRO, then removal

of 𝑣 is PRO-relevant.
(2) For each (𝑐′,CONTRA) ∈ 𝒞′, for each 𝑑 ∈ 𝒟 and for each

𝑣 ∈ 𝑉𝑝 (𝑑, 𝑐) such that 𝑣 ≱CONTRA 𝑣 (𝑑, 𝑐′):
(a) Construct 𝑐′′ by replacing the value of 𝑑 in 𝑐′ by 𝑣 .
(b) If the justification status of 𝑐′′ is not CONTRA then re-

moval of 𝑣 is CONTRA-relevant.

Example 17. Building on Example 16, given 𝒞′ = {(𝑐′′,CONTRA)},
for CONTRA-relevance we only check {(trustmark, 0), (terms, 1),
(fake_payment_option, 0), (complaints, 6)}. This is UNDECIDED,
so removal of value 0 for fake_payment_option is CONTRA-relevant.

Proposition 9. Within some domain 𝒟, let 𝒞 be a case base and
let 𝑐 be an incomplete focus case. The algorithm explained above,
applied on 𝑐 , 𝒟 and 𝒞, returns for each dimension 𝑑 ∈ 𝒟 all PRO-
and CONTRA-relevant values to remove.

Proof sketch. Given a case base 𝒞 and incomplete focus case
𝑐 , let 𝒞∗ be the set of cases (𝑐′, 𝑜) where 𝑐′ ∈ 𝐶𝑚 (𝑐′′) for some
(𝑐′′, 𝑜) ∈ 𝒞. Let 𝒞′ = min(𝒞∗). For each completion of 𝑐 , its justifi-
cation status given 𝒞 equals its justification status given 𝒞′, thanks

ICAIL 2023, June 19–23, 2023, Braga, Portugal Odekerken, Bex and Prakken

to the way 𝒞′ is constructed. Then by Lemma 1, for any given dimen-
sion 𝑑 ∈ 𝒟 and 𝑗 ∈ {PRO,CONTRA}, the removal of possible value
𝑣 ∈ 𝑉𝑝 (𝑑, 𝑐) is 𝑗-relevant w.r.t. 𝒞 and 𝑐 iff there is some completion
𝑐′ = 𝐷′ of 𝑐 such that 𝑐′ is 𝑗 w.r.t. 𝒞′; and 𝑐′′ = {(𝑑′, 𝑣 (𝑑′, 𝑐′)) | 𝑑′ ∈
𝒟 \ {𝑑}} ∪ {(𝑑, 𝑣)} is not 𝑗 w.r.t. 𝒞′. This is the case iff there is some
(𝑐∗, 𝑗) ∈ 𝒞′ such that 𝑐∗′ = {(𝑑′, 𝑣 (𝑑′, 𝑐∗)) | 𝑑′ ∈ 𝒟\{𝑑}}∪{(𝑑, 𝑣)}
is not 𝑗 w.r.t. 𝒞′: from right to left this follows immediately, as 𝑐∗
must be a completion of 𝑐 . From left to right: since 𝑐′ is 𝑗 w.r.t.
𝒞′, there must be some (𝑐∗, 𝑗) ∈ 𝒞′ such that 𝑐′ ≥PRO 𝑐∗. Let
𝑐∗′ = {(𝑑′, 𝑣 (𝑑′, 𝑐∗)) | 𝑑′ ∈ 𝒟 \ {𝑑}}∪ {(𝑑, 𝑣)}; then 𝑐′′ ≥PRO 𝑐

∗′, so
𝑐∗′ cannot be 𝑗 . Therefore all 𝑗-relevant updates are returned. □

Similar to the stability algorithm from Section 5.1, the proposed
algorithm has a worst-case exponential runtime but runs in poly-
nomial time under specific conditions on the dimension ordering.

Proposition 10. If for each dimension 𝑑 of an incomplete fact sit-
uation 𝑐 the set𝑉𝑝 (𝑑, 𝑐) has a single minimum and a single maximum
value, then the relevance algorithm runs in polynomial time.

Proof sketch. Under these conditions, there is at most one
minimal matching value for each dimension for any case in 𝒞, so
each case in 𝒞 has a single minimal matching completion. □

In this section, we have proposed efficient algorithms for the
problems of justification, stability and relevance. Although some of
these problems are in high complexity classes, there are conditions
on the dimensions for which the algorithms run in polynomial time.

6 RELATEDWORK
The research area of reasoning with legal cases originated from
Rissland and Ashley’s work on the HYPO system for US trade se-
cret’s law [17]. Compared to HYPO, our approach differs in, for
instance, the evaluation of cases, the selection of the citeable case(s)
and the strategy for generating hypothetical variations. Whereas
HYPO focused on generating debates as they can take place between
lawyers, we focus on classifying the outcome of legal cases, in par-
ticular those cases for which the outcome is forced by a precedent.
Related work in this area includes [3, 16]. In particular, we are inter-
ested in the models for precedential constraint proposed by Horty
[8, 9], especially the result model. Whereas this result model has
been applied for explaining outcomes of machine-learning-based
decision-making applications [15], we propose an alternative appli-
cation for human-in-the-loop decision support. Moreover, whereas
the models for precedential constraint in [8, 9] are defined on cases
that either contain only factors or only dimensions, in our work
we also consider cases that combine factors and dimensions in a
similar way as [15]. An alternative way of combining factors and
dimensions in a single model of precedential constraint is presented
in [14].

Another area of related research is factor ascription [6], which
provides argumentation schemes for the presence of factors in a
case. This could be used for instantiating possible dimension values.

Finally, the idea of defining and computing a stability status and
relevance notion, based on possible future information updates,
was developed in other settings as well. Our definitions for sta-
bility and relevance are inspired by the definitions presented for
argumentation-based reasoning in [11, 12].

7 CONCLUSION
We defined and studied the notions of justification, stability and
relevance for Horty’s result model of precedential constraint. In
contrast to earlier work on this model, we do not assume that all
factors and dimension value assignments of the focus case have
been established with certainty. In order to account for this, we
have introduced the notion of incomplete fact situations. We have
defined an incomplete fact situation as stable if its justification
status, that is, the enforced outcome by the precedential constraint,
does not change, regardless of any change in the uncertain elements.
For incomplete fact situations that are not stable, we have studied
the task of identifying relevance: which updates on dimensions
can be performed to make the resulting incomplete fact situation
stable? We have described how these tasks can be exploited in
a human-in-the-loop decision support system: if an incomplete
fact situation is stable, then further investigation is not required.
Otherwise, relevant updates reveal which dimensions should be
investigated further. Finally, we showed that the tasks of identifying
the justification and stability status of a focus case can be performed
efficiently, just like the task of identifying relevant uncertainties.

REFERENCES
[1] Vincent Aleven. 1997. Teaching Case-Based Argumentation Through a Model and

Examples. Ph.D. thesis. University of Pittsburgh.
[2] Kevin Ashley. 1991. Reasoning with cases and hypotheticals in HYPO. Interna-

tional journal of man-machine studies 34, 6 (1991), 753–796.
[3] Kevin Ashley and Stefanie Brüninghaus. 2009. Automatically classifying case

texts and predicting outcomes. Artificial Intelligence and Law 17, 2 (2009), 125–
165.

[4] Kevin Ashley and Edwina Rissland. 1988. A case-based approach to modeling
legal expertise. IEEE Intelligent Systems 3 (1988), 70–77.

[5] Trevor Bench-Capon. 2017. Hypo’s legacy: introduction to the virtual special
issue. Artificial Intelligence and Law 25, 2 (2017), 205–250.

[6] Trevor Bench-Capon and Katie Atkinson. 2022. Argument Schemes for Factor
Ascription. In Computational Models of Argument. Proceedings of COMMA 2022.
68 – 79.

[7] Guido Governatori, Francesco Olivieri, Antonino Rotolo, and Matteo Cristani.
2022. Stable Normative Explanations. In Legal Knowledge and Information Systems.
IOS Press, 43–52.

[8] John Horty. 2011. Rules and reasons in the theory of precedent. Legal Theory 17
(2011), 1–33.

[9] John Horty. 2019. Reasoning with dimensions and magnitudes. Artificial Intelli-
gence and Law 27, 3 (2019), 309–345.

[10] Daphne Odekerken and Floris Bex. 2020. Towards Transparent Human-in-the-
Loop Classification of Fraudulent Web Shops. In Proceedings of the 33rd Interna-
tional Conference on Legal Knowledge and Information Systems, Serena Villata,
Jakub Harasta, and Petr Kremen (Eds.). IOS Press, 239–242.

[11] Daphne Odekerken, Floris Bex, AnneMarie Borg, and Bas Testerink. 2022. Ap-
proximating Stability for Applied Argument-based Inquiry. Intelligent Systems
with Applications (2022), 200110.

[12] Daphne Odekerken, AnneMarie Borg, and Floris Bex. 2022. Stability and Rele-
vance in Incomplete Argumentation Frameworks. In Computational Models of
Argument. Proceedings of COMMA 2022, Francesca Toni, Sylwia Polberg, Richard
Booth, Martin Caminada, and Hiroyuki Kido (Eds.). 272 – 283.

[13] Joeri Peters, Floris Bex, and Henry Prakken. 2022. Justifications derived from
inconsistent case bases using authoritativeness. In Proceedings of the 1st Inter-
national Workshop on Argumentation for eXplainable AI, Vol. 3209. CEUR WS,
1–13.

[14] Henry Prakken. 2021. A formal analysis of some factor-and precedent-based
accounts of precedential constraint. Artificial Intelligence and Law 29, 4 (2021),
559–585.

[15] Henry Prakken and Rosa Ratsma. 2022. A Top-level Model of Case-based Ar-
gumentation for Explanation: Formalisation and Experiments. Argument &
Computation 13, 2 (2022), 159–194.

[16] Henry Prakken and Giovanni Sartor. 1998. Modelling reasoning with precedents
in a formal dialogue game. Artificial Intelligence and Law 6 (1998), 231–287.

[17] Edwina Rissland and Kevin Ashley. 1987. A case-based system for trade secrets
law. In Proceedings of the 1st international conference on Artificial intelligence and
law. 60–66.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Justification, stability and relevance
	3.1 Justification
	3.2 Stability
	3.3 Relevance

	4 Application in human-in-the-loop decision support
	5 Complexity and algorithms
	5.1 Computing stability
	5.2 Computing relevance

	6 Related work
	7 Conclusion
	References

