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Abstract. We present Global Causal Analysis (GCA) for text clas-
sification. GCA is a technique for global model-agnostic explainability
drawing from well-established observational causal structure learning al-
gorithms. GCA generates an explanatory graph from high-level human-
interpretable features, revealing how these features affect each other and
the black-box output. We show how these high-level features do not al-
ways have to be human-annotated, but can also be computationally in-
ferred. Moreover, we discuss how the explanatory graph can be used for
global model analysis in natural language processing (NLP): the graph
shows the effect of different types of features on model behavior, whether
these effects are causal effects or mere (spurious) correlations, and if and
how different features interact. We then propose a three-step method for
(semi-)automatically evaluating the quality, fidelity and stability of the
GCA explanatory graph without requiring a ground truth. Finally, we
provide a detailed GCA of a state-of-the-art NLP model, showing how
setting a global one-versus-rest contrast can improve explanatory rele-
vance, and demonstrating the utility of our three-step evaluation method.

Keywords: Explainable Machine Learning (XML) · Causal explanation
· Model-agnostic explanation · Natural Language Processing (NLP).

1 Introduction

Explaining the global behavior of a machine learning (ML) model remains a diffi-
cult and laborious task. It is hard to distinguish features with directed influences
from ones related through (spurious) correlations. Causal explanations could
help in this regard, providing explanations discerning causal effects from corre-
lational ones [9]. Even when these can be distinguished, then generalizing—in a
human-understandable way—if and how features relate to the model behavior
over a large input space remains challenging. Providing a human-understandable
explanation inevitably requires selection (e.g. limiting the features under con-
sideration by setting a contrast between outputs) and an appropriate level of
explanation (e.g. abstracting detailed behavior into high-level tasks) [36].
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Fig. 1: Explaining the global behavior of a black-box predictor of emotions on
Reddit comment data, with a (causal) explanatory graph for multi-aspect anal-
ysis of high-level features related to the task, robustness and fairness.

Sani, Malinsky and Shpitser [48] proposed a method to explain the global
behavior of black-box prediction methods using well-established causal graphical
model learning techniques. Their method summarizes the behavior of a black-
box model (e.g. a convolutional neural network) using low-level features (e.g.
pixels) to predict a label (e.g. bird species), with a graph of high-level ‘human-
interpretable’ features (e.g. the belly color, and wing pattern and shape). The
generated global (causal) graph shows the (in)dependence relations amongst the
high-level features themselves and with the predicted label, and how these are
affected by unobserved confounders. Sani et al. illustrate the utility of their
approach on image classification tasks with human-annotated high-level fea-
tures: a simulated dataset, bird classification and pneumonia detection from
X-rays. However, they were unable to (a) infer/select features with computa-
tional approaches for the image modality—thus always requiring expensive and
time-consuming human annotation—and (b) assess the causal graph quality and
faithfulness to the model—providing no guarantee that the explanatory model
generalizes well over the data and is actually telling of model behavior.

In this paper, we show how to computationally infer high-level features and
how to use them to study multiple aspects of model behavior. We introduce a
method to evaluate the quality and faithfulness of the explanatory model without
requiring a ground-truth reference. Additionally, we enhance explanatory rele-
vance through class-wise contrastive explanations. Global Causal Analysis
(GCA)5 summarizes black-box model behavior in a single graphical overview,
showing (directed) feature interactions, and if and how they influence the black-
box decision function. Key to GCA is our proposed (semi-)automatic evaluation
method, which supports in estimating (a) how telling the features are of model
behavior and (b) the quality of the explanatory graph.

5 https://github.com/MarcelRobeer/GlobalCausalAnalysis

https://github.com/MarcelRobeer/GlobalCausalAnalysis
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Fig. 1 illustrates the example case in this paper, explaining the behavior
of a black-box predictor Ŷ = f(X) for sentiment analysis of Reddit comments
X over a dataset (e.g. the test set). The inferred high-level features (e.g. the
presence of male words, arousal score and number of tokens [len tok]) and the
human-annotated ones (e.g. subreddit) are combined in a global explanatory
(causal) graph, showing features with a direct influence on prediction Ŷ (· → Ŷ ),
indirectly related features (with a directed path to Ŷ ), correlated features (↔
indicates a confounder · ← U → ·) and uncertain directed relations (◦ indicates
an end can be < or −). In summary, we make the following contributions:

1. We introduce the idea to use GCAs to describe model-agnostic black-box
behavior to the area of natural language processing (NLP)—which has
a well-established body of work on linguistic phenomena and methods for
inferring them [4]—;

2. we extend the human-labelled features with inferred high-level features—
considering model behavior with features related to multiple aspects, such
as features related to the task at hand, robustness (generalizability) and
fairness (protected attributes)—;

3. we propose a three-step method to (semi-)automatically evaluate the qual-
ity, fidelity, and stability of the explanatory graph—which does not rely
on a ground truth as these are unavailable for a black box [22]—, and;

4. we study improving the relevance of high-level features by applying concepts
from global (type-level) contrastive explanation [35,37,60].

The remainder of this paper is structured as follows. Sec. 2 discusses the
background, techniques & evaluations of model-agnostic global explanation and
causal models, and details the technique in [48]. Sec. 3 describes our extension
for the NLP domain, and the experimental set-up. Sec. 4 discusses the results of
the experiment, and illustrates GCA with three detailed analyses. Finally, Sec. 5
summarizes our findings and provides avenues for future research.

2 Background: Model-Agnostic Global Explanation and
Causal Models

We describe the background on model-agnostic global explanation and causal
models, and provide a detailed description of how causal models can be applied
for model-agnostic global explanation. Global explanation (sometimes referred
to as model explanation) aims to provide insights into the entire machine learn-
ing (ML) model it aims to explain [5]. It is distinguished in scope from local
explanation (instance explanation; with well-known techniques such as LIME
[44] and SHAP [34]) where the aim is to explain individual outputs by the ML
model [5,23]. Their counterparts in causal explanation are type-level causality
(akin to global explanation it describes general relations amongst variables) and
token-level causality (like local explanation, focusing on individual events) [61].
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2.1 Model-agnostic global explanation

In our work, we focus on model-agnostic explanations: querying a black-box
on its input-output behavior to derive an explanation. Unlike model-specific
explanations, model-agnostic explanations have the benefit of being applicable
to any type of ML model for a task type (e.g. classification or regression), and
provide flexibility regarding the explanation and its representation [43]. Model-
agnostic explanations are a type of post-hoc (pedagogical) explanation [5]. These
are explanations that are applied after training the ML model [5].

Some well-known model-agnostic global explanation methods (an overview
is given by [23] and [5]) are ones that study the relation between individual fea-
tures and a model output (typically in tabular data)—Partial Dependence Plots
(PDPs) [17], Individual Conditional Expectation (ICE) plots [21] and Average
Local Effect (ALE) plots [1]—model-agnostic global feature importance scores—
e.g. Model Class Reliance (MCR) [16]—, and global surrogates that approximate
a black-box f(·) with a more interpretable model g(·) and use that directly for
explainability—e.g. Trepan [12,13], Model Extraction [3], Black-Box Explana-
tions through Transparent Approximations (BETA) [30] and Transparent Model
Distillation [54]. In addition, specifically relevant to our work are Variable Inter-
action Networks (VINs) [28] (evaluating the importance of non-additive tabular
feature interactions with a graph), causal interpretations of black-box models
[64] (showing how PDPs can be used in conjunction with a known causal graph)
and Lewis [18] (analyzing model behavior on tabular data with plots, including
the influence of contextual factors such as sex).

Definitions In ML, we train a model (e.g. a classifier) f : X q 7→ Y taking inputs
X ∈ X q (e.g. texts) and transforming them into outputs Y ∈ Y (e.g. class labels).
Training can be done in many ways, such as the supervised paradigm—where
we provide it with a dataset D = (X,Y ) with example input-label pairs—,
or clustering—assigning instances X to k clusters based on their similarity. To
illustrate our idea, in our paper we focus on supervised classification models.

The model-agnostic global explanation problem involves finding an explana-
tory function g(·) that explains the behavior of Ŷ = f(X) over some dataset
D′ = (X, Ŷ ) [23].6 From this function (e.g. a surrogate decision tree for global
behavior), we then extract a set of explanations E (e.g. rules from the decision
tree) that model the behavior of f(·) in a human-understandable way [23].

Evaluation Several properties are important when considering the quality of
a global explanation. Perhaps the most important property of an explanation
method is its fidelity (faithfulness) to the model it aims to explain [6,29]. If
the explanatory model g(·) is also a predictive model (e.g. a decision tree or
sparse linear regressor), fidelity is typically estimated by calculating the predic-
tive performance of the predicted labels Ŷ ′ = g(X) of the surrogate model on

6 Note that the dataset D′ used for explanation does not have to be the same as the
dataset D used for training, but can be e.g. the test set [5].
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the predicted labels of black-box Ŷ = f(X) [13,44]. Another important property
is the explanation stability (robustness) [6]. Stability is an indicator for the re-
liability and generalizability of the explanation [6,58]. A stable explainable ML
method minimizes the effect of randomness and sampling on its performance [6].
Stability is either evaluated by applying small perturbations δ to the inputs X
and taking the mean distance between g(X) and g(X + δ) [58], or by drawing
subsamples from the data to measure the effect of data distribution shifts [31].

2.2 Causal graphs

Graphical Markov models use a graph consisting of nodes V and edges E to
represent (conditional) independence relations among a set of variables [46]. We
discuss four well-established types of graphical Markov models (two assuming
no latent variables and two indicating the effect of latent confounders), search
algorithms for causal structure learning, and how these algorithms are evaluated.

Graphs assuming causal sufficiency Directed acyclic graphs (DAGs) G =
(V,E) consist of directed edges Vi → Vj between nodes (at most one between
any two nodes), and are not allowed to contain cycles [46]. DAGs imply con-
ditional independencies amongst the variables, where conditional independence
Xi⊥⊥Xj | X indicates that the set of elementsX blocks all paths betweenXi and
Xj .

7 An example DAG is provided in Fig. 2a, with nodes V = {Age, Education,
IQ, Length of Application Letter, Occupation, Sex}. The graph implies in-
dependencies

{
Age⊥⊥ Occ |(Edu, Sex), Age⊥⊥ Sex, Edu⊥⊥ IQ | Age, IQ⊥⊥ Occ | Age,

IQ⊥⊥ Occ |(Edu, Sex), Len⊥⊥{Age, Edu, IQ, Sex}
}
.

DAGs are Markov equivalent if they imply the same independencies. A com-
pleted partially directed acyclic graph (CPDAG) C[G] is a unique representation
of the Markov equivalence class (MEC) of DAGs [G] that have the same skeleton
graph (the same graph, where the edge marks are removed from the edges) and
v -structures (subgraphs with structure Vi → Vk ← Vj). CPDAGs can contain
two types of edges: (1) a directed edge Vi → Vj indicates that Vi → Vj in all
DAGs in the equivalence class, and; (2) an undirected edge Vi—Vj indicates that
in some DAGs in [G] there is an edge Vi → Vj and in others an edge Vi ← Vj .

Graphs with confounders A mixed graph is a graph that can contain di-
rected edges → and bidirected edges ↔ [62]. In the case of graphical Markov
models, bidirection Vi ↔ Vj indicates that there are unmeasured (latent) con-
founders Vi ← U → Vj (where U may be a single confounder U or represent a
network of variables). Graphical Markov models allowing bidirected edges can
therefore convey the information that there is a (set of) latent node(s) (i.e. vari-
ables not captured in the graph) that influence the (in)dependence relations
within the graph. Formally stated, they do not assume causal sufficiency—the
assumption that there are no unobserved confounders. A mixed graph is an

7 Xi ⊥⊥Xj is a short-hand for Xi ⊥⊥Xj | ∅ (i.e. X = ∅). Xi ⊥⊥{Xm, Xn} implies
Xi ⊥⊥Xm and Xi ⊥⊥Xn.
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ancestral graph if (a) there are no directed cycles, and (b) whenever there is
an edge Vi ↔ Vj then there is no other path from Vi to Vj or from Vj to
Vi that is directed. Fig. 2b shows an example ancestral graph of the DAG in
Fig. 2a where Age and Sex are unmeasured. This graph implies independencies{
Edu⊥⊥ Len, IQ⊥⊥ Len, Occ⊥⊥ IQ | Edu, Occ⊥⊥ Len

}
.

An ancestral graph is said to be maximal—i.e. a maximal ancestral graph
(MAG)M—if for every pair of nonadjacent nodes (Vi, Vj) there exists a set W
(Vi, Vj ̸∈W) such that Vi⊥⊥Vj |W [46]. That is, each absent edge corresponds
to a conditional independency. Several MAGs can encode the same conditional
independencies, forming an MEC of MAGs [M] described uniquely by a partial
ancestral graph (PAG) P[M]. PAG P[M] (a) has the same adjacencies as any mem-
ber of [M] does; (b) contains a mark of an arrowhead (<) iff it is shared by all
MAGs in [M], and; (c) contains a mark of a tail (−) iff it is shared by all MAGs in
[M]. Arrows may contain a circle (◦) at an end to indicate that this end is in some
MAGs in [M] an arrowhead (<) and in some a tail (−). Fig. 2c depicts an exam-
ple PAG implying independencies

{
Age⊥⊥ IQ, Age⊥⊥ Occ | Edu, Edu⊥⊥ IQ | Occ

}
,

and the MAGs in the Markov equivalence class it describes.

Causal structure learning Many authors have studied the problem of infer-
ring causal models. Causal structure learning (sometimes called causal search or
causal (structure) discovery) has the goal to infer a causal model from purely ob-
servational data, interventional data (e.g. interventions in randomized controlled
trials) or a mixture of both [19,59]. These causal models also include causal struc-
tures beyond the aforementioned graphical Markov models, such as the popular
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structural causal models (SCMs; also known as non-parametric structural equa-
tion models [NPSEMs]) [25,24]. We outline some general strategies for causal
structure learning from observational data.8 We describe some causal structure
learning algorithms for mixed data in our future work (Sec. 5).

Generally, we distinguish three types of learning methods for causal mod-
els: constraint-based, score-based and functional. Constraint-based methods use
a series of statistical (conditional) independence tests to search for an MEC
of graphs that satisfies these independencies [59]. Well-established algorithms in
this category include the Peter-Clarke (PC) algorithm [52] that learns a CPDAG
Ĉ9 from observational data, and the (really) Fast Causal Inference ((r)FCI) algo-
rithm [63,10] for learning a PAG P̂ from observational data. Score-based methods
aim to maximize a scoring function to find the best graph among candidates [59].
(Fast) Greedy Equivalence Search ((f)GES) [8,42] learns a CPDAG Ĉ from ob-
servational data by iteratively adding edges based on a scoring function, such as
the Bayesian Information Criterion (BIC) for continuous variables. Functional
methods search for Functional Causal Models (FCMs)—describing a causal net-
work as a set of functions between variables, e.g. linear relationships and addi-
tive noise—by exploiting structural asymmetries in the data when assuming the
parametric form of the given FCM (e.g. linearity). An example early FCM is
the Linear Non-Gaussian Acyclic Model (LiNGAM) [51], which uses statistical
analysis to search for a linear SCM when the data is assumed to be non-Gaussian.

Evaluation Once a causal graph has been generated from the structural learn-
ing algorithm, how can it be evaluated? In the case of graphical Markov models,
results (e.g. a PAG P̂) are typically evaluated relative to some ground-truth
model (e.g. the DAG G used for data generation). A popular metric is the Struc-
tural Hamming distance (SHD) [56] between the two graphs, which is the number
of edge insertions, deletions and flips required to change from one graph to an-
other.10 Other statistics for evaluations are computed based on the confusion
matrices of the adjacencies or edges of the two graphs, with the assumption that
both graphs include the same features (nodes). Adjacency statistics use the skele-
ton graphs of the two graphs (where all types of edges in a graph are replaced by
an undirected edge −, thereby reducing each node pair to two types of possible
edges), and include statistics such as Adjacency Precision (AP) and Adjacency
Recall (AR) [41]. Edge statistics compare the exact edges of the two models (e.g.
{no edge, —, ←, →} for a CPDAG) to evaluate performance. Arrowhead or tail
statistics compare one end of each edge, the head or the tail respectively, and
include statistics such as the Arrowhead Precision (AHP) and Arrowhead Recall
(AHR) [41]. Note that for each of these statistics, other (computed) statistics
of the confusion matrix could be reported instead, such as the number of true
positives, the accuracy or the F1-score.

8 For an in-depth overview, we refer the interested reader to [19] and [59].
9 We use P as a short-hand for PAG P[M] and C as a short-hand for CPDAG C[D].

10 Note that the SHD was originally defined on CPDAGs, but a similar approach can
be applied to other types of graphical Markov models as well.
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2.3 Causal graphs for model-agnostic global explanation

Sani, Malinsky and Shpitser [48] propose a global (type-level) method to sum-
marize the behavior of a black-box model (e.g. a convolutional neural network
[CNN]) that uses low-level features X ∈ X (e.g. pixels) to predict a label Y ∈ Y
(e.g. a type of bird). Instead of explaining in the original feature space, the be-
havior of learned function Ŷ = f(X) is explained with the (causal) relationships
between some high-level ‘human-interpretable’ features Z ∈ Z (e.g. the belly
color, wing pattern & shape, and bill shape & size) and predicted label Ŷ ∈ Y.

In summary, the method works as follows. First, train a black-box X →
Ŷ in a supervised manner with pairs (X,Y ) to obtain predictions Ŷ . Here,
X = (X1, X2, ... , Xq) are the values in input space X q, Y ∈ Y the labels, and

f : X q 7→ Y a black-box function with predictions Ŷ ∈ Y. Next, to explain the
global behavior of f(·), estimate a causal partial ancestral graph (PAG) P̂ over
V = (Z, Ŷ ) with the FCI algorithm [63,10].11 Other causal estimation methods
and graphs (Sec. 2.2) may be used here instead, but note that PAGs are a good
fit for explanation since we can minimize the set of selected variables (PAGs
do not assume causal sufficiency) and places where confounding is present are
made explicit. Z = (Z1, Z2, ... , Zp) (p << q) is a set of interpretable features
that are given with the data (e.g. additional human-interpretable labels for a
bird classifier, or meta-descriptors of the image such as lighting descriptions or
when the picture was taken). The learned PAG forms a family of causal models
that indicate (in)dependence relations amongst the selected features V = (Z, Ŷ ),
and places for confounding and correlation with the following notation:

– direction Zi → Ŷ indicates that Zi causes Ŷ ;
– bidirection Zi ↔ Ŷ indicates Zi and Ŷ share a latent cause Zi ← U → Ŷ ;
– partial direction Zi ◦→ Ŷ indicates Zi → Ŷ , Zi ↔ Ŷ , or both, and;
– partial bidirection Zi ◦–◦ Ŷ indicates Zi → Ŷ , Zi ← Ŷ , Zi ↔ Ŷ , or any

combination thereof.

The method is evaluated in the computer vision domain with (1) a global
PAG for images generated from a known causal diagram; (2) a bird-classification
task where a CNN is trained on images with human-annotated features for nine
types of bird; (3) a binary pneumonia CNN classifier with annotated features by
radiologists, and; (4) a comparison of their techniques’ outputs to a sample of
local explanations by LIME [44] and SHAP [34].

While promising, the method of Sani, Malinsky and Shpitser [48] has two
shortcomings. First, it relies on human-annotated high-level features for expla-
nations. Human annotation is an expensive and time-consuming process. For
the image modality, the authors were unable to apply computational methods
for inferring high-level features (e.g. using visual object recognition) to address
this issue. Second, they do not assess two key properties of global explanations
(Sec. 2.1): if the explanatory graph is actually telling of model behavior (fidelity)
and the generalizability of the explanatory graph (stability).

11 The only restriction given to FCI is that Ŷ is a non-ancestor of any variable in Z,
i.e. all elements in Z can cause each other and Ŷ but they cannot be caused by Ŷ .
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3 Experimental Set-Up

Natural language processing (NLP) has properties similar to computer vision,
but has a more well-established body of work we can draw from to computation-
ally infer features. Therefore, we apply Global Causal Analysis (GCA) to a
state-of-the-art black-box text classifier on the GoEmotions [14] dataset. Impor-
tantly, we also evaluate the stability and faithfulness of the explanatory graph
to the black-box model it aims to explain with our novel evaluation method.

Like computer vision, NLP typically uses a large input space X q for its tasks.
For example, the RoBERTa model [33] studied here converts the input texts into
a sequence of tokens from a 30,000 word vocabulary. Using a small set of high-
level features would therefore greatly benefit global explanations for NLP. We
draw from the extensive literature on computationally inferring linguistic phe-
nomena (from simple methods such as word presence to morphological, syntactic,
and semantic information [4]), and illustrate how these features can be related to
multiple aspects affecting model behavior (e.g. task-, robustness- and/or fairness-
related features). In addition, we take the concept of contrastive explanation and
use it to enhance explanatory relevance. Contrastive explanation is applied in
local explanation to improve explanatory relevance by setting a one-versus-all
class-wise contrast [37,60]. We apply the contrasts globally to limit the edges
in the graph to features relevant for a specific class. As a key contribution, we
propose a three-step evaluation method that requires no ground-truth causal
graph for evaluation—as for black boxes the ground truth is unknown [22]. The
method (1) quantifies how faithful GCA is to the model it aims to explain, and
(2) evaluates the structural fit and stability of the explanatory graph.

3.1 Data preprocessing & model training

GoEmotions [14] is a dataset containing 58,009 English-language Reddit com-
ments. Each instance comprises a unique identifier, comment text, author, sub-
reddit the comment was posted on, timestamp when it was posted, and a ref-
erence to its parent (if applicable). To anonymize the texts, proper names are
replaced with a [NAME] token and religions with a [RELIGION] token [14].

Each comment in the dataset is labelled by 3–5 human annotators with 27
fine-grained emotions or with the neutral label (28 fine-grained labels in total). Of
the instances, 83% have one label assigned, 15% two labels, 2% three labels and
.2% four or more [14]. All fine-grained labels belong to one of four high-level sen-
timent labels ‘positive’ (12 fine-grained labels), ‘negative’ (11), ‘ambiguous’ (4)
or ‘neutral’ (1) [14]. For our experiments, we aggregate the 28 fine-grained labels
into the four high-level sentiments, where instances that end up with multiple
high-level sentiment labels are excluded from further analysis (resulting in 50,063
instances). Furthermore, the data is divided into the predefined 80%–10%–10%
train-test-validation splits [14]. Tab. 1 shows the four high-level sentiment labels,
the corresponding fine-grained labels that are grouped under these labels, and
per dataset split the number of instances assigned each sentiment label. More-
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Table 1: GoEmotions dataset descriptives of the high-level sentiment groupings
(‘positive’, ‘negative’, ‘ambiguous’, ‘neutral’) after removing instances with non-
unique high-level sentiments, and their corresponding emotion labels.

Sentiment Emotion label(s) Train Test Validation

Positive admiration, amusement, approval, caring,
desire, excitement, gratitude, joy, love,
optimism, pride, relief

15 216 1863 1941

Negative anger, annoyance, disappointment,
disapproval, disgust, embarrassment, fear,
grief, nervousness, remorse, sadness

8133 1070 1014

Ambiguous confusion, curiosity, realization, surprise 3858 488 459

Neutral neutral 12 823 1606 1592

+ 40 030 5027 5006

Table 2: GoEmotions dataset excerpt with Reddit comment text, subreddit
and human-annotated emotion labels and high-level sentiment label.

text subreddit emotion labels label

You have a nice bro. pettyrevenge [admiration] positive

[NAME] ruled out due to injury. [NAME] starts. rugbyunion [neutral] neutral

I would hope the guy is genuine and honest, but... dating [optimism] positive

Hi, [NAME]! I thought I would stop by and ... atheism [caring, love, opt.] positive

Ghost them. It’ll drive them crazy and give you... TrueOffMyChest [neutral] neutral

Wow, an [NAME] sighting timberwolves [surprise] ambig.

i love how the caption implies that the only un... Instagramreality [amusement] positive

over, Tab. 2 depicts seven example instances, with their corresponding subreddit,
human-annotated fine-grained label and inferred high-level sentiment.

For the black-box model, we finetune DistilRoBERTa-base: a distilled [47]
version of English large language model RoBERTa [33]. We finetune it on the
training split with the task to predict labels Y (label; ‘positive’, ‘negative’,
‘neutral’, ‘ambiguous’) based on Reddit comments X (text).12 The most accu-
rate model on the validation split is chosen as the final model. After finetuning,
the model achieves an accuracy score of 73.1% (macro-weighted F1-score 70.3%)
on the test split.13 The black-box model assigned the label ‘positive’ 1932 times,
‘neutral’ 1546 times, ‘negative’ 1002 times, and ‘ambiguous’ 547 times.

12 The model is finetuned for 3 epochs, with a (linear) learning rate of 5×10−5, AdamW
optimizer (β1 = 0.9, β2 = 0.999, ϵ = 1 × 10−8), a GPU batch size of 16, with seed
42. The Python finetuning uses Transformers 4.27.4 with PyTorch 2.0.0, Datasets
2.11.0 and Tokenizers 0.13.2, and is conducted on a Tesla T4 GPU (CUDA 12.0).

13 The goal is not to get a well-performing model, but to explain model behavior.
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3.2 Procedure: inferring features and global contrastive explanation

We extend the human-annotated high-level feature subreddit with 22 computa-
tionally inferred high-level features. These features serve as an example, to illus-
trate what type of features one could construct when applying GCA. We group
them into three example groupings (so-called aspects) relevant for model analy-
sis, where we use GCA to study their effect on model behavior separately, and
in conjunction to show how GCA can provide an integrated multi-aspect model
behavior analysis. Moreover, we propose to apply contrastive explanation—used
to minimize the explanatory factors to the ones distinguishing the actual output
from a contrast case in local explanation [37], e.g. by setting a contrast between
one class label and all others [60]—to improve GCA’s explanatory relevance.

Inferring features We study three example aspects of global model behavior:
task -, robustness- and fairness-related features. GCA can be applied to study
these aspects separately, or an integrated analysis of multiple of these aspects
can be performed. Tab. 3 overviews the human-annotated and inferred features
for each aspect, their data type (boolean, categorical, integer, floating point),
their description, and if they are human-annotated. What features (and aspects)
are relevant in applying GCA depend on the task and application (area).

Task-related features relate to the task at hand. For sentiment analysis, we
study the subreddit (‘Does sentiment generally differ between subreddits?’) and
presence of emojis (‘Does the model use emojis?’) as potential factors. We also
include three components traditionally distinguished for word meaning in emo-
tion detection: valence (positiveness–negativeness), arousal (active-passive) and
dominance (dominant-submissive) [38]. In addition, we include eight basic emo-
tion categorizations by Plutchik [40], with a well-balanced distribution amongst
sentiments [39]: anger, anticipation, disgust, fear, joy, sadness, surprise and trust.

Robustness-related features test model sensitivity to noise, distributional ar-
tifacts and spurious correlations that may all negatively affect model generaliz-
ability [20]. GCA could be used to check if these features are (in)directly related
with the black-box output. We include features known to affect earlier sentiment
analysis models [32]: the text length (characters, word-level tokens, sentences)
and readability (reading grade). In addition, we include features for studying the
effect of comment voice (active/passive) and character case (all lowercase).

Fairness-related features can be indicative of potential bias with respect to
protected attributes [20]. The link between fairness research and NLP explain-
ability has for the most part been limited to local explanations applied to hate
speech detection [2], while we focus on global explanations for sentiment analy-
sis. We consider features related to the protected attributes religion (which has
been replaced with the [RELIGION] token), a person’s name (replaced with the
[NAME] token), and a person’s gender (with words indicative of the male, female
or non-binary, e.g. waiter versus waitress or herself versus themselves [49]).14

14 We stress that the inferred fairness features here merely serve as an illustration—
e.g. of indicators of protected attributes that one can study—, as the actual relevant
features depend heavily on the intended application (area) of the ML model.
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Table 3: An overview of all included high-level features (grouped by aspect of
analysis), their data type, description, and if they are human-annotated.

Aspect Feature Type Description Annot.

Task subreddit cat Subreddit the comment is from ✓
has emoji bool Any emoji in comment*

NRC valence float Mean valence score†

NRC arousal float Mean arousal score†

NRC dominance float Mean dominance score†

NRC anger int # tokens labelled with anger‡

NRC anticip. int # tokens labelled with anticipation‡

NRC disgust int # tokens labelled with disgust‡

NRC fear int # tokens labelled with fear‡

NRC joy int # tokens labelled with joy‡

NRC sadness int # tokens labelled with sadness‡

NRC surprise int # tokens labelled with surprise‡

NRC trust int # tokens labelled with trust‡

Robust. len chr int Length in number of characters

len tok int Length in number of tokens§

len snt int Length in number of sentences‖

is active bool All sentences are in active voice¶

all lower bool All characters are lowercase

flesch grade float Flesch-Kincaid reading grade**

Fairness has name bool Mention of [NAME]

has religion bool Mention of [RELIGION]

male words int Number of male-indicative words††

female words int Number of female-indicative words††

non-binary wor. int Number of words indicative of
non-binary gender††

* If any character is a valid emoji according to emoji. † Mean human rating of NRC
valence/arousal/dominance (VAD) for words [38]. ‡ According to the tokens in
NRC Emotion Lexicon (EmoLex) [39]. § Total number of tokens over all sentences,
according to the spaCy tokenizer (en core web sm) [27]. ‖ Number of sentences ac-
cording to spaCy [27]. ¶ No passive sentences (PassivePy [50]) ** Calculated with
textstat, where FKGL = 0.39(words/sentences) + 11.8(syllables/words)− 15.59.
†† According to the English Gender Bias Tool (GenBit) wordlist [49].

Class-wise global contrastive explanation Since the relevant features within
each aspect may differ for each class label, in addition to describing the overall
behavior of the black-box in distinguishing all four classes (Ŷ ) we also perform
class-wise global analysis [35]. Contrastive explanation is usually applied to local
explanations, where explanatory relevance is increased by setting a one-versus-
rest class-wise contrast (e.g. ‘Why classify Xi as ‘positive’ rather than ‘not posi-
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tive’?) [37,60]. The explanation can then be limited to factors for distinguishing
this class from all others [60]. For example, the task-related feature NRC joy

may be indicative in distinguishing the ‘positive’ label, and less informative for
‘neutral’. For each class, we perform a one-versus-rest analysis where the class
of interest is encoded as one (1) and the remaining classes as zero (0).15

Procedure For the test split of GoEmotions (containing 5,027 instances) we let
the black-box (Sec. 3.1) predict class labels for each instance Ŷ = f(X). We then
estimate a GCA explanatory graph with the χ2 independence test, with α = 0.05
and the restriction that Ŷ may not have a direct arrow towards any variable
Zi ∈ Z [48] (i.e. Ŷ ̸→ Zi and Ŷ ◦̸→Zi) . We do this separately for each aspect
(Ztask, Zrobust, Zfair) and all aspects combined (Z = Ztask ∪ Zfair ∪ Zrobust),

both for one-versus-rest on each predicted class (Ŷpositive, Ŷnegative, Ŷambiguous,

Ŷneutral) and over all classes (Ŷ ). To work with the χ2 independence test, non-
integer continuous features are binned into 10 equal-sized intervals. In addition,
to speed up FCI the subreddit feature is re-coded into the 10 most frequently
occurring subreddits and the remainder is placed in a category ‘other’.

3.3 Evaluation

We propose a three-step evaluation method for applying GCA in practical appli-
cations and for our experiments. The method aids domain experts and analysts
in picking a set of variables Z, and indicates the domain fit, faithfulness and
stability of the explanatory graph without requiring a ground-truth reference.

1. Z-fidelity The fidelity (faithfulness) of the global explanatory model g(·)
is typically estimated with the predictive performance of the predicted labels
Ŷ ′ = g(X) of the surrogate on the labels Ŷ = f(X) of the black-box it aims
to explain [29,44,13] (Sec. 2.1). However, as in this case we use PAGs as an
explanatory model—capturing (in)dependence relations among variables rather
than being predictive models—we cannot compute Ŷ ′. Nevertheless, fidelity is
still important because if there is no good fit between the features in Z and Ŷ ,
then it might not be telling on how they are related.

To get a general sense of the explanatory power of the set of variables Z on
Ŷ , we fit an ML model that is generally well-performing (predictive accuracy)
and has few assumptions on the data: a Random Forest.16 The Random Forest is
merely instrumental in measuring how much information the high-level features
contain about the black-box output; other methods can be used here instead.
The model is trained with stratified k-fold cross validation (we use 5 folds), and
estimates Ŷ ′ on the folds are compared to predictions Ŷ of the black-box model.

15 Note that this same class-contrastive approach to binary encode outputs [60] can
also be used to apply GCA to other types of black-boxes, such as ones providing
probabilistic class scores, regression analysis and clustering.

16 The Random Forest uses default hyperparameters for scikit-learn 1.2.2 (100 trees,
Gini impurity) with seed 42.
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We report the F1-score as an estimate for Z-fidelity (other metrics can be used
here instead).17 Note that this step should be performed before fitting the global
(causal) explanatory model, and can even be informative in feature selection.

2. Sanity checks Once the GCA explanatory graph has been estimated, we
first perform some general sanity checks. We distinguish two types: (1) automatic
checks ensure that the background knowledge imposed on the PAG generation
algorithm is indeed in the final GCA explanatory graph (e.g. there are no edges
from Ŷ to Z,18 or if a directed edge that is required is indeed there), and;
(2) manual checks consider the GCA explanatory graph and if the expected
relations amongst Z (according to e.g. a domain expert or when the functions
are known) are indeed present, regardless of their effect on Ŷ (e.g. the number of
words and number of characters will be related regardless of whether the model
uses these as causal influence or not). In our results, we discuss the manual and
automatic sanity checks for three example cases.

3. Structural fit & stability Modal Value of Edges Existence (MVEE) is
a method for evaluating the quality of generated PAGs when no ground-truth
graph is known [26]. It is an extension of Intersection-Validation (InterVal) [57],
which evaluates the quality of generated CPDAGs C = {C1, ... , Cn} learned by
n different algorithms on the same dataset. In InterVal, the idea is to generate
an agreement graph—obtained by taking the strict intersection between graphs
C: copy an edge (or the absence thereof) iff it is agreed upon by all graphs,
else place a special edge (· · ·)—that is then used as proxy for the ground-truth
graph. Evaluation metrics of CPDAGs (Sec. 2.2) are then computed relative
to the agreement graph: for our experiments we use the SHD [56] towards the
agreement graph, called the Partial Hamming Distance (PHD) [57].

MVEE [26] takes the notion of agreement graphs from InterVal, but addresses
the issue that since there are three more types of edges possible for PAGs,
InterVal may be too strict. The edge values for any pair of variables for a CPDAG
can take on four values {no edge, —, ←, →}, while in a PAG the edges between
a pair of nodes can take on seven {no edge, ◦–◦, ←, ←◦, →, ◦→, ↔}. Instead of
the strict intersection between graphs, MVEE finds a skeleton agreement graph
using a majority vote from the set of skeletons of a set of input graphs [26]. First,
for each PAG P the skeleton S is calculated (i.e. removing the ends of the edges,
such that each pair of nodes can only have an edge value of {no edge, —}), and
then for these the InterVal method is applied to obtain an agreement graph.

To measure the structural fit & stability (in absence of a ground-truth PAG)
we compute the PHD of the GCA explanatory graph with MVEE, where the
agreement graph is generated from five explanatory graphs fitted on random 80%
subsamples of (Z, Ŷ ) (stability within subsamples; see Sec. 2.1). For MVEE, the
PHD indicates the number of edge deletions and additions (↓ lower is better)
between the explanatory graph and the agreement graph. Since the number of

17 We use F1-score to account for non-equal distributions of predicted labels (Sec. 3.1).
18 That is, the outdegree of Ŷ for the GCA explanatory graph should always be zero.
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nodes differs for the aspects in our experiment (and thereby the total possible
number of edges between nodes), we report the relative partial Hamming distance
with the MVEE strategy (relative MVEE; ranging from 0 to 1; ↑ higher is better):

1− MVEE

nnodes × (nnodes − 1)/2
(1)

where nnodes is the number of nodes in the GCA explanatory graph and
(
nnodes

2

)
=

nnodes × (nnodes − 1)/2 the maximum number of edge values over all nodes.

4 Results and Discussion

We generate GCA explanatory graphs for different sets of high-level features
Z (task -related, robustness-related, fairness-related, and all combined) for each
predicted label (for each class separately, and all four combined) to explain the
behavior of the finetuned DistilRoBERTa model on the test split of GoEmotions
(Sec. 3.1 & Sec. 3.2).19 We evaluate their Z-fidelity and structural fit & stability
(Sec. 3.3), and discuss three example graphs in detail.20

4.1 Quantitative results

Tab. 4 summarizes the Z-fidelity scores for our experiments and Tab. 5 the
relative MVEE scores. In summary, we observe the following findings: (1) a high
Z-fidelity for the behavior on Ŷ (all four aspects), the ‘positive’ one-versus-rest
label (each aspect except fairness), ‘neutral’ label (each aspect except fairness)
and ‘negative’ label (Z and Ztask) shows that for these combinations the selected
features Z are very informative of model behavior, and (2) a mean relative
MVEE of 0.988 (SD = 0.016) over all aspect-label combinations indicates that
the method is structurally well-fitting and stable.

Z-fidelity Tab. 4 cross-tabulates the Z-fidelity for the aspects (task-, robustness-
& fairness-related features, and all features combined) and the predicted class
label behaviors (four contrastive one-versus-rest and one combined). Especially
the global behavior of the black-box on the ‘positive’ class (Ŷpositive) can be
captured well with all features (F1-score of 59.80%) and just the task-related
high-level features (57.99%). Describing its behavior with few features (24 and
13 respectively) is commendable given the black-box model complexity: the
DistilRoBERTa-base input space is large as the model uses a vocabulary of
30,000 tokens, the model itself consists of 82 million parameters, and the model

19 The mean wall-time to generate the GCA explanatory graphs is 0.12s for the fairness
aspect (5 features), 0.72s for the robustness aspect (6 features), 2.37s for the task
aspect (13 features), and 220.11s for all aspects combined. Wall-time was measured
with causal-learn 1.3.3 (no depth limit) on Python 3.9.16, on a MacBook Pro with
macOS Monterey 12.6.3 (16GB 2.3 GHz 8-Core Intel Core i9).

20 Source code available at https://github.com/MarcelRobeer/GlobalCausalAnalysis.

https://github.com/MarcelRobeer/GlobalCausalAnalysis
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Table 4: Z-fidelity (↑ F1-score, 0–100%) as an estimate for the explanatory power
of the chosen variables in Z on Ŷ . Higher scores indicate that the variables are
more telling of Ŷ , and thereby of the (absence) of edges in the explanatory graph.

Aspect features label (Ŷ ) positive neutral negative ambiguous

all 24 41.95 59.80 32.27 31.79 3.48

fairness 5 21.33 1.11 10.27 0.00 0.00

robustness 6 28.48 40.67 32.43 13.02 8.31

task 13 39.04 57.99 32.69 34.14 6.60

Table 5: The GCA method has a high structural fit & stability (↑ relative MVEE,
0–1) for all combinations of aspects and predicted class labels.

Aspect label (Ŷ ) positive neutral negative ambiguous

all 0.98 0.99 0.98 0.99 0.98

fairness 1.00 1.00 0.93 1.00 1.00

robustness 1.00 1.00 1.00 1.00 1.00

task 0.97 0.99 0.99 0.99 0.99

was pretrained on five datasets totalling 160GB of text [33]. The same can be
said for the Z-fidelity of the features in distinguishing all four labels (label Ŷ ),
where all features (41.95%) and the task-related features (39.04%) are able to
capture a large portion of the overall behavior (distinguishing four classes). The
explanatory graph for each of these combinations should therefore provide valu-
able insights into what features are (not) related to model behavior.

Moreover, interestingly the model seems to be barely affected by any indi-
cators for protected attributes (fairness aspect) for the one-versus-rest model
behavior. This indicates that any arrows towards Ŷ in the explanatory graph
do not represent a substantial predictive value. The same low Z-fidelity scores
hold for the ‘ambiguous’ label. However, in this case it indicates we have not se-
lected/inferred variables telling of model behavior. Features to study the robust-
ness aspect, however, seem to have a relatively large effect on model behavior—
especially across the ‘positive’ and ‘neutral’ classes. These scores indicate that
robustness-related (unlike fairness-related) features might substantially affect
black-box model behavior. Studying the explanatory graphs in more detail can
help in distinguishing if these effects are directed or merely due to confounding.

Structural fit & stability The generated GCA explanatory graphs are very
stable and have a high structural fit. Tab. 5 shows the relative MVEE scores
(ranging from 0 to 1; higher is better) for all aspect-label combinations. Across
all combinations, the mean relative MVEE is 0.988 (SD = 0.016). Nine out of
20 combinations are perfectly stable and have a good fit (relative MVEE 1.00),
while 11 combinations have a near-one relative MVEE score. Note that the lowest
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Task
Black-box

has_emoji NRC_joy

NRC_surprise

subreddit

Ypositive

NRC_valence

NRC_dominance NRC_arousal

NRC_trust

NRC_anticipation

NRC_fear

NRC_anger

NRC_disgust

NRC_sadness

Fig. 3: GCA explanatory graph for task-related features Ztask on the ‘positive’
label Ŷpositive (one-versus-rest). The features directly related (Zi → Ŷpositive)

to Ŷpositive are NRC valence and NRC joy, while Ŷpositive is related due to con-
founding (↔) with has emoji and NRC dominance.

scoring combination (0.93; fairness-related features for the ‘neutral’ label) has
an absolute MVEE of 1 (one edge insertion/deletion to the agreement graph).

4.2 Empirical results

We discuss three GCA explanatory graphs in detail, where we consider the three-
step evaluation method, the resulting graph and how these interrelate.

Task-related features for label ‘positive’ Fig. 3 depicts the explanatory
graph for the 13 task-related features for the ‘positive’ label (one-versus-rest).
The features are able to capture the black-box behavior on distinguishing ‘posi-
tive’ (Ŷpositive) from other classes very well. The model has a Z-fidelity of 57.99

(Tab. 4) and high structural fit & stability (relative MVEE 0.99; Tab. 5). Ŷpositive

does not have any outgoing arrows and thus passes the automatic sanity check.
The class-wise contrast for the ‘positive’ label does not only quantitatively

improve the explanatory relevance, but studying the explanatory graph in de-
tail also provides additional qualitative insights. Two features have a direct
effect (→) on Ŷpositive: NRC joy (number of words indicative of ‘joy’ accord-
ing to NRC EmoLex [39]) and NRC valence (mean human scores of positive-
ness–negativeness [38]). NRC trust has an indirect effect on Ŷpositive through
NRC joy, and NRC arousal through NRC dominance and NRC valence. In addi-
tion, has emoji (presence of any emojis) and NRC dominance (inferred based on
mean human score of dominant-submissive [38]) share unmeasured confounders
with Ŷpositive (↔), possibly providing spurious correlations with model outputs.

Separate from model behavior, we also observe strong interrelatedness be-
tween indicators of VAD scores (NRC valence, -arousal and -dominance), be-
tween emotions with a positive sentiment focus (NRC trust, -joy, -anticip.),
and between emotions with a relatively negative sentiment (NRC anger, -disgust,
-fear and -sadness). These subgroups largely correspond to the positive and
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Robustness
Black-box flesch_grade

len_tok all_lower

Y neutral

len_chr

is_active
len_snt

Fig. 4: GCA explanatory graph for robustness-related features Zrobust on
Ŷneutral. len snt is directly related (Zi → Ŷneutral) to Ŷneutral. all lower and
is active are independent from Ŷneutral and all other features in Zrobust.

negative sentiment emotions [40], indicating expected behavior from the manual
sanity check. Important to note, however, is that VAD scores are usually con-
sidered independent aspects of emotion [38]. The subgraph with emotions with
positive sentiment is related through NRC joy to the label ‘positive’ (Ŷpositive),
while the subgraph with emotions with negative sentiment is not on a causal
path to Ŷpositive. This could be a good indicator that the black-box indeed uses
positive task-related features for its classification (e.g. indicators of joy), which
may enhance trust that the model will generalize well and is relatively robust.

Robustness-related features for label ‘neutral’ We also study the ro-
bustness aspect for distinguishing the predicted ‘neutral’ label from all other
classes. Fig. 4 shows the GCA explanatory graph with six robustness features
and Ŷneutral. The graph has a Z-fidelity of 32.43 and a relative MVEE of 1.00.
It passes the automatic sanity check that Ŷneutral ̸→ Zi and Ŷneutral ◦̸→Zi.

Two features are independent from model behavior (Ŷneutral) and from all
other robustness-related features: all lower (if all characters are lowercase) and
is active (if all sentences in the comment are in active voice). The length in
number of sentences (integer len snt) is directly indicative of the ‘neutral’ label.
The number of characters (len chr), number of tokens (len tok), the number
of sentences (len snt) and the Flesch-Kincaid reading grade (flesch grade;
calculated based on number of syllables, words and sentences) form a clique. This
is as expected, as the lengths all positively correlate (longer comments consist
of more characters, tokens and sentences) and the reading grade is functionally
related to the lengths. Thus, the graph passes the manual sanity check.

FCI cannot distinguish the direction of this relationship (Zi → Zj , Zi ↔ Zj

or Zi ← Zj) and if there are any confounders. It assigns a partial bidirection
relationship between all four variables Zi ◦–◦Zj . Including additional robustness
features or combining the analysis with other aspects (e.g. fairness-related or
task-related features) may help in clarifying these relations, and to see how
strong the connection is between the robustness features and the ‘neutral’ label.

Task-, fairness- and robustness-related features combined Fig. 5 shows
the GCA explanatory graph over all aspects combined, for the whole black-box
model behavior (distinguishing all four labels). The graph scores a Z-fidelity of
41.95 and a relative MVEE (structural fit & stability) of 0.98. The graph passes
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subreddit
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female_words

non-binary_w.
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NRC_joy

NRC_surprise
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NRC_dominance

NRC_arousal
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NRC_anger
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has_religion

has_emoji

Fig. 5: GCA explanatory graph for all features Z = Ztask ∪ Zfair ∪ Zrobust (24

high-level features) on the overall black-box predictive behavior Ŷ (four classes).
The features directly related (Zi → Ŷ ) to Ŷ are NRC arousal, NRC dominance

and len snt. NRC disgust and NRC valence are directly related due to con-
founding (↔) with Ŷ . has emoji, is active, all lower, non-binary words

and has religion are independent from Ŷ and all other features in Z.

the sanity check that Ŷ has no outgoing directed arrows. To foster multi-aspect
analysis, the features related to different aspects in the explanatory graph are
color-coded, and the node Ŷ is shown in gray with a double bolded border.

Three things immediately stand out. First, the model behavior is directly af-
fected by the mean arousal score (inferred based on the NRC VAD Lexicon [38]),
the mean dominance score (also inferred using [38]) and the sentence length. Sec-
ond, male words (fairness-related), has name (fairness), female words (fairness)
and subreddit (task-related) form a subgraph, with behavior separate from the
behavior of Ŷ . Male- and female-indicative words, and the presence of the [NAME]
token are indicative of the subreddit. Third, several task-, robustness- and
fairness-related features are unconnected in the explanatory graph: has emoji,
is active, all lower, non-binary words and has religion.

Many features either share a common confounder or have a directed relation-
ship in line with expected behavior (as studied in detail in Fig. 3 and Fig. 4). For
task-related features, we observe strong connections with negative emotion fea-
tures (NRC anger, -disgust, -sadness and -fear), the VAD components of emo-
tions (NRC valence, -arousal and -dominance), and the three features catered
towards positive emotions (NRC joy, -anticip. and -trust). For robustness, the
lengths in characters (len chr), tokens (len tok) and sentences (len snt) are
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correlated as expected, and the reading grade (flesch grade) also functionally
relates to the instance length. Moreover, we observe how many task-related and
robustness features share confounders: {NRC disgust ↔ len snt, NRC valence

↔ len chr, NRC arousal ↔ len tok, NRC trust ↔ flesch grade}.

5 Conclusion and Future Work

We presented Global Causal Analysis (GCA) as a method for global model-
agnostic explanations for text classification, explaining model behavior with a
causal explanatory graph. The GCA explanatory graph interprets black-box
functioning over a dataset with high-level human-interpretable features (either
over all classes or contrastively by setting a one-versus-rest class-wise contrast),
revealing if and how these features affect each other and the black-box output.

GCA is a strong addition to global explanation methods. GCA can distin-
guish causal relations from effects due to (spurious) correlations, and explicitly
shows where latent confounders are. The explanatory graph not only shows rela-
tions with the model output, but also between the high-level features themselves.
We show how these features can be inferred computationally, avoiding costly hu-
man annotation to explain model behavior at a higher level of abstraction.

The three-step evaluation method that is a key part of GCA (1. Z-fidelity;
2. Sanity checks; 3. Structural fit & stability) proves useful in quantitatively and
empirically assessing (a) the explanatory power of the selected high-level features
and (b) the quality of the explanatory graph. GCA can summarize large parts
of model behavior with few human-interpretable features, is structurally stable
and well-fitting, and has high explanatory relevance with its ability to explain
behavior over all classes or with class-wise one-versus-rest contrasts.

We consider three interesting avenues for future research. The first is using
global interventions to provide a stronger link with causality research. NLP of-
fers several computational approaches (e.g. [20,45,53]) to intervene upon spe-
cific attributes (e.g. for gender replacing all female names with male ones).
GCA can then be applied with a mixed causal learning method (e.g. [11,15,55]),
and then further enhanced by estimates of the effect sizes and directions (pos-
itive/negative) of features (e.g. Average Causal Effect [7]). Second, we want to
study applying causal high-level feature explanations to local explanations. We
could benefit from the wealth of desidarata, definitions and methods for coun-
terfactuals and contrastive explanation at the local level (see [9]). Moreover, we
could simplify local explanations by summarizing behavior with high-level fea-
tures, study them from multiple aspects, and also explore locally explaining at
various levels of linguistic structures (e.g. explanations at the phrase or word
level). Third, we want to apply GCAs in practical contexts to perform human
evaluations with domain experts, model developers and model end-users.
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