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Abstract. The structure of arguments is an important issue in the field of informal logic and
argumentation theory. In this paper we discuss how the “standard approach” of Thomas,
Walton, Freeman and others can be analyzed from a formal perspective. We use the ASPIC+
framework for structured argumentation for making the standard model of argument structure
complete and for introducing a distinction between types of individual arguments and types of
argument structures. We then show that Vorobej’s extension of the standard model with a
new type of hybrid arguments is not needed if our formal approach is adopted. We finally
discuss the structure of so-called accrual of arguments.

Introduction

The structure of arguments is an important issue in the field of informal logic and
argumentation theory. Many logicians have given their definitions according to
different criteria. The main issue is to define the different ways in which premises
and conclusions can be combined to generate different structural argument types.
The first model can be traced back to the works of Beardsley (1950), Thomas (1986)
and Copi and Cohen (1990). Many informal logicians contributed to this topic, for
instance, Walton (1996) and Freeman (2011). Vorobej (1995) extended their models
with an additional argument type called “hybrid arguments”. The main aim of this
paper is to show how formal Al models of argumentation can be used to further
extend and clarify these informal models of the structure of arguments. In particular,
we argue that although these models provide much insight in the structure of
argumentation, they still have some limitations, since their classifications are
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incomplete and since they do not distinguish between types of individual arguments
and structures consisting of several arguments. Moreover, we argue that Vorobej’s
proposal can be clarified by making a distinction between deductive and defeasible
arguments.

We aim to achieve our aims by applying the ASPIC+ framework of Modgil &
Prakken (2011a,b), and Prakken (2010), since it arguably currently is the most
general Al framework for structured argumentation. The framework has been shown
(Gijzel & Prakken, 2011, Modgil & Prakken, 2011a,b; Prakken, 2010) to capture a
number of other approaches to structured argumentation, such as assumption-based
argumentation (Dung, Mancarella, & Toni, 2007), forms of classical argumentation
(Gorogiannis & Hunter, 2011) and Carneades (Gordon, Prakken, & Walton, 2007).
In Prakken (2010) it is also shown that ASPIC+ can capture reasoning with
presumptive argument schemes. The ASPIC+ framework is based on two ideas: the
first is that conflicts between arguments are often resolved with explicit preferences,
and the second is that arguments are built with two kinds of inference rules: strict, or
deductive rules, whose premises guarantee their conclusion, and defeasible rules,
whose premises only create a presumption in favor of their conclusion. The second
idea implies that ASPIC+ does not primarily see argumentation as inconsistency
handling in a given base logic: conflicts between arguments may not only arise from
the inconsistency of a knowledge base but also from the defeasibility of the
reasoning steps in an argument. Accordingly, arguments can in ASPIC+ be attacked
in three ways: on their uncertain premises or on their defeasible inferences, and the
latter by either attacking their conclusion or the inference itself. We will use the
ASPIC+ framework to make four specific contributions: (1) to make the standard
classifications complete; to (2) indicate and explain why convergent and divergent
arguments are not arguments but argument structures; (3) to indicate and explain
why Vorobej's class of hybrid arguments is not needed if an explicit distinction is
made between deductive and defeasible arguments; and (4) to analyze the structure
of so-called accrual of arguments.

This paper is organized as follows. In section 2, we introduce the standard
informal model of argument structure and Vorobej’s (1995) extension with so-called
hybrid arguments. In section 3, we present a simplified version of the ASPIC+
framework. We then use this framework in section 4 to complete the standard model
and to distinguish between types and structures of arguments. In section 5, we
discuss Vorobej’s notion of hybrid arguments and how it can be captured in
ASPIC+. In section 6, we define the structure of a special kind of argument, namely
accrual of arguments. Section 7 concludes the paper.

Approaches to Argument Structure
We first introduce the main approaches to argument structures, notably the approach

by e.g. Walton (1996) and Freeman (2011), which we will call the standard
approach and Vorobej's (1995) extension with so-called hybrid arguments.
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1.1 Standard Approach

The standard approach to the structure of arguments was introduced by Stephen N.
Thomas (1986). He divided the arguments into (1) linked arguments, which means
that every premise is dependent on the others to support the conclusion, (2)
convergent arguments, which means that premises support the conclusion
individually, (3) divergent arguments, which means that one premise supports two
or more conclusions, and (4) serial arguments, which means that one premise
supports a conclusion which supports another conclusion.

Walton (1996) then further discussed the structure of arguments. We present the
informal definitions of the concepts of structures of arguments according to his latest
description (2006).

Definition1. The types of arguments are informally defined as follows:

(1) An argument is a single argument iff it has only one premise to
give a reason to support the conclusion.

(2) An argument is a convergent argument iff there is more than one
premise and where each premise functions separately as a reason
to support the conclusion.

(3) An argument is a linked argument iff the premises function
together to give a reason to support the conclusion.

(4) An argument is a serial argument iff there is a sequence
{d-e- ,Ayy such that one proposition 4; acts as the conclusion
drawn from other proposition 4;; as premise and it also functions
as a premise from which a new proposition 4;;+; as conclusion is
drawn.

(5) An argument is a divergent argument iff there are two or more
propositions inferred as separate conclusions from the same
premise.

(6) An argument is a complex argument iff it combines at least two
arguments of types (2), (3), (4) or (5).

In order to show the diagrams of argument types and structures, we first need to
define an inference graph. An inference graph is a labeled, finite, directed graph,
consisting of statement nodes and supporting links indicating connecting
relationships between nodes. In the diagrams of inference graphs, nodes are
displayed as dots while supporting links are indicated using ordinary arrowheads.
Then example diagrams of the above argument types are shown in Figurel (for
simplicity, the distinction between strict and defeasible supporting links will be left
implicit).

Example 1. Walton gives the following examples of, respectively, a convergent,
divergent and linked argument:
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(1) (A) Tipping makes the party receiving the tip feel undignified; (B)
Tipping leads to an underground, black-market economy; (C)

Tipping is a bad practice.

(2) (A) Smoking has been proved to be very dangerous to health; (B)
Commercial advertisements for cigarettes should be banned; (C)
Warnings that smoking is dangerous should be printed on all

cigarette packages.

(3) (A) Birds fly; (B) Tweety is a bird; (C) Tweety flies.
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Figure 1. Diagrams of the Standard Approaches

In Example 1(1), the three statements form a convergent argument, since
statements (A) and (B) function separately as a reason to support the conclusion (C).
By contrast, in Example1(2) these three statements form a divergent argument, since
statement (B) and (C) are inferred as separate conclusions from the same premise
(A). Finally, Example1(3) is a linked argument, since neither premise alone gives

any reason to accept the conclusion.
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2.2. Hybrid Arguments

Mark Vorobej (1995) argued that the standard approach needs to be extended with a
class of hybrid arguments. To discuss this class, we must first present Vorobej’s
basic definitions of types of arguments.

Definition2. An argument 4 is:
o simple iff 4 has exactly one conclusion. Otherwise, 4 is complex.
e convergent iff 4 is simple and each premise in A4 is relevant to C,
where relevance is treated as a primitive dyadic relation obtaining
in each instance between a set of propositions and a single
proposition.

Definition3. A /inked set and linked argument are defined as follows:
e A setof premises A forms a linked set iff’
(1) A contains at least two members;
(2) Aisrelevant to C, and
(3) no proper subset of A is relevant to C.
e Anargument A is /inked iff A is simple and each premise in A is a
member of some linked set.
Vorobej then motivates this new class of hybrid arguments with examples like
the following one.

Example2. Consider example (F) as follows:

e (F): (1) All the ducks that I’ve seen on the pond are yellow. (2)
I’ve seen all the ducks on the pond. (3) All the ducks on the
pond are yellow.

Vorobej observes that (2) in isolation is not relevant to (3), so this is not a
convergent argument. Secondly, (1) is relevant to (3), so (1) is not a member of any
linked set, so this is also not a linked argument. Vorobej regards (F) as a hybrid
argument, since (1) is relevant to the conclusion (3) and (2) is not relevant to the
conclusion (3) but (1) and (2) together provide an additional reason for (3), besides
the reason provided by (1) alone.

Vorobej provides the following definition of Aybrid arguments in terms of a
relation of supplementation between premises.

The relation of supplementation and iybrid argument are defined as follows:

e A setof premises X supplements a set of premises A iff

(1) X is not relevant to C;

(2) X is relevant to C;

(3) XU 4 offers an additional reason R in support of C, which A alone
does not provide;

(4) X and A are the minimal sets yielding R which satisfy clauses
(1),(2) and (3).
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e An argument A4 is hybrid iff A is simple and contains at least one
supplemented (or supplementing) set.
In Example2 premise (2) supplements premise (1). The argument is therefore a
hybrid argument.

The ASPIC+ Framework

The ASPIC+ framework of Modgil & Prakken (2011a,b) and Prakken (2010)
models arguments as inference trees constructed by two types of inference rules,
namely, strict and defeasible inference rules. In this paper we use a simplified
version of ASPIC+ framework, with symmetric negation instead of an arbitrary
contrariness function over the language and with just one instead of four types of
premises. We also leave the various preference orderings on inference rules, the
knowledge base and arguments implicit.

Definition5. [Argumentation system] An argumentation system is a tuple AS =
(L, R), where
e is a logical language closed under negation (—). Below we write
= —1) when either ¢ = -1 or 1 = —¢p.
o R=R,UR, is a set of strict (R;) and defeasible (R;) inference
rules such that R,NR~=Q.
Definition6. [Knowledge base] A knowledge base in an argumentation system
(L,R)isaset CCL.

Arguments can be constructed step-by-step by chaining inference rules into trees.
In what follows, for a given argument the function Prem returns all its premises,
Conc returns its conclusion Sub returns all its sub-arguments, while TopRule returns
the last inference rule applied in the argument.

Definition7. [Argument] An argument 4 on the basis of a knowledge base K in
an argumentation system (£, R) is:

1. ¢ if ¢ek with: Prem(4) = {p}; Conc(4) = @; Sub(4) = {¢};
TopRule(A) = undefined.

2. Apyeees A= [ if Ay ,A, are arguments such that there
exists a strict/defeasible rule Conc(4;) ,------ ,Conc(4,)
— /=% in R,UR,.
Prem(A) =Prem (4;) U,------ ,UPrem(4,);

Conc(A) =1;
Sub(A) = Sub (A)) U,------,USub (4,) U{4};
TopRule(A) = Conc(A4;) ,--+--- ,Conc(d,) — | =>1

DefRules(A) = DefRules(4;)U,------ ,UDefRules(A,).
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An argument is strict if all its inference rules are strict and defeasible otherwise.

Definition8. [Maximal proper subargument] Argument A is a maximal proper
subargument of B iff A is a subargument of B and there does not exist any proper
subargument C of B such that 4 is a proper subarugment of C.

The following example illustrates these definitions.

Example3. Consider a knowledge base in an argumentation system with R,={p,
q—s;u, vowh Ri= {p=t; s, ri=v}; K= {p, q, r, u}.

The diagram of the argument for w is displayed in Figure 2. Strict inferences are
displayed with solid lines and defeasible inferences with dotted lines. Formally the
argument and its subarguments are written as follows:

A=[pl; A71q); As=[r]; AL As=[m];
As=[A1, A2 5s];
A7=[A3, As, Ag =V];
As=[4s —n];
Ag=[As = ul;
Ay=[A47, Ao = w].
We have that
Prem(A,0) = {p, q, 1, t, m};
Conc(A,9) = w;
Sub(A410)={ A1, A2, A3, As, As, Ag, A7, Ag, Ao, A10};
MaxSub(A410)= { A7, Ao};
DefRules (Ajg}= { n=>u; s, r,t=v};
Toprule( Ayo}= {u, v—>w}.

Figure 2. An Argument in ASPIC+
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In the ASPIC+ framework arguments can be attacked in three ways: attacking a
premise, a defeasibly derived conclusion, or a defeasible inference. Attacks
combined with an argument ordering yield a defeat relation, so that ASP/C+ induces
an abstract argumentation framework in the sense of Dung (1995). Since for present
purposes the precise nature of the attack and defeat relations are irrelevant, we refer
the reader for the formal definitions to Modgil & Prakken (2011) and Prakken
(2010).

Types and Structures of Argument

We now give a new classification of arguments in terms of the ASPIC+ framework
and then define so-called argument structures, which are collections of arguments
with certain features. We first define two kinds of unit arguments and then define
several other argument notions consisting of these two unit types in different ways.
We finally define various structures of argument in terms of the various definitions
of argument types.

Definition9. [4rgument type] The types of arguments can be defined as follows:

(1) An argument 4 is an unit [ argument iff 4 has the form B—1) or
B=>1 and subargument B is an atomic argument B:¢. We call the
inference rule ¢ — 1 or o= an unit I inference.

(2) An argument A is an unit Il argument iff A4 has the form

By,-eet ,B,—1 or B, , B.=1) and subarguments Bj,----- B,
are atomic arguments Bj:py, ------ ,B.:p,. We call the inference
rule @q,------ ,Pn > Or ©1,------ ,on=> an unit II inference.

(3) An argument A is a multiple unit I argument iff all inferences
Plyeeeee ,rm in the argument A are unit I inferences.

(4) An argument A4 is a multiple unit II argument iff all inferences
Plyeeeee ,rn in the argument A4 are unit I1 inferences.

(5) An argument A4 is a mixed argument iff A has at least one unit I
subargument and unit /I subargument.
We display the diagrams of argument types in Figure3. For simplicity, we
assume #=2 in these diagrams and show only one case of a mixed argument.
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Figure 3. Diagrams of Argument Types in the New Classification

Propositionl. Every argument is of exactly one argument type.

Proof. Firstly, we prove the existence of an argument type by induction on the
number of unit inferences. For n=1, argument 4 corresponds to an unit [ argument.
For n=k>1, argument A4 corresponds to a multiple unit I argument, a multiple unit I1
argument, or a mixed argument. For n=k+1, we represent argument A4 as
By, ,B,=1), where m<n. Consider the following cases:

(1) If B; is a multiple unit I argument and ry,; is an unit I inference,
then according to definition7 and definition9(3), 4 is a multiple
unit [ argument.

(2) If B; is a multiple unit I argument and 7y, is an multiple unit II
inference, then according to definition7 and definition9(5), 4 is a
mixed argument.
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(3) If B; is a multiple unit Il argument and r.; is an unit I inference,
then according to definition7 and definition9(5), 4 is a mixed
argument.

(4) If B; is a multiple unit II argument and r;.; is an unit Il inference,
then according to definition7 and definition9(4), 4 is a multiple
unit Il argument.

(5) If B; is a mixed argument and r.; is an unit I or unit Il inference,
then according to definition7 and definition9(5), 4 is a mixed
argument.

Secondly, we prove the property of uniqueness of argument type. Assume there
exists an argument A corresponding to two or more argument types: then there must
exist two or more top rules in the argument, and then there are two or more
conclusions in 4, which contradict the definition of argument.

Consider again Example 3. We have that A4, A4, 43, A4, As are atomic arguments,
Ag is an unit [ argument, Ag is an unit Il argument, Aq is a multiple unit I, A 1is a
multiple unit II, and A, is a mixed argument.

We next define several argument structures, which are sets of arguments with
certain properties. We should first define connected arguments and an
interconnected argument set as follows:

Definition10. Argument 4 and B are connected iff there exist A’ €Sub(4) and
B’eSub(B), such that Conc(4’)ePrem(B’) or Conc(4’)=Conc(B’) or
Prem(A’)< Prem(B’).

Proposition2. An argument 4 is connected with any of its subarguments.
Proof. For any A;€Sub(A) it holds that Prem(4;) < Prem(A). From definition10, it
follows that A4, is connected with A4.

In Example 3, argument A; is connected with any subargument A, where
ie{l,.---- ,9}. But minimal subarguments of 4, are not connected.

Definition11. A set of arguments S={4,,----- A,y (n=2) is interconnected iff for
any argument 4; and 4; € S, there exists a sequence of arguments B, By,
Biig,ee ,B,, in S, where Bj; is connected with B.; (1<m<n), such that 4, is
connected with B, and 4; is connected with B,,,.

In Example3, {4;,----- ,Ajp} is interconnected. Moreover, let S={4, B, A’, B’},
where A=[p], B=[q], A’=[A=>p] with inference rule p—¢ and B’=[B—>q] with
inference rule Y= s. From definitionl1, it follows that S is not interconnected, since
(1) there is no argument to connect 4 with B or B’ and (2) there is no argument to
connect B with A’and (3) there is no argument to connect 4’ and B’.
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Corollaryl. A set of arguments S consisting of an argument 4 and all of its
subarguments is interconnected.
Proof. Follows from proposition2 and definition11.

We call the argument set which consists of an argument and its subarguments as
classic interconnected set and non-classic interconnected set otherwise. For instance,
in Example3, {4;,----- ,Aj0} 1s classic interconnected.

Definition12. The set of argument structures' is defined as follows:

(1) A set of arguments {4,,----- ,A,} 1s a serial convergent structure
SCS iff there are only unit I arguments in the set of arguments
{Ap,eeeee ,A,} and for any 4; and 4; we have Conc(4;)=Conc(4,),
where i #].

(2) A set of arguments {A;,----- A, is a serial divergent structure
SDS iff there are only unit I arguments in the set of arguments
{Ajyee-ee .A,} and for any 4; and 4; we have Prem(4;)=Prem(4;),
where i#; and 4; £Sub(4)).

(3) A set of arguments {4,,------ ,A,} is a linked convergent structure
LCS iff it contains only unit I arguments and for any 4; and 4; we
have Conc(A;)=Conc(4,), where i#].

(4) A set of arguments {A;,----- A, is a linked divergent structure
LDS iff it contains only unit II arguments and for any 4; and 4; we
have Prem(A4;)=Prem(4;), where i+j.

(5) A set of arguments {A4;,----- A,y 1s a mixed structure MS iff it is

non-classic interconnected and it is not of the form of either SCS,
SDS, LCS or LDS.

We display the diagrams of argument structures in Figure4. For simplicity, we
assume #=2 in the diagrams and show only one case of mixed structure.

! The structure here is different from the structure in informal approaches, where it refers to the
structure of an individual argument.
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Figure 4. Diagrams of Argument structures in the New Classification

Proposition3. All of argument structures (SCS, SDS, LCS, LDS or MS) are non-
classic interconnected.
Proof. Follows from definition 11 and definition 12.

Propositiond. If a set of arguments S is a mixed structure, then there exist at least
one unit ] argument and one unit I argument in it.

Proof. Suppose for contradiction that there does not exist unit I argument and
one unit II argument in a set of arguments S. From definition 9, we have all cases as
follows:

S does not contain unit I argument and one unit II. It contradicts definition 9,
since all of argument types consists of unit I argument or one unit I1.

S only contains unit I argument. If S is not interconnected, then S is not in any
argument structure. If S is interconnected, then S is a SCS or SDS according to
definition 12.

S only contains unit II argument. If S is not interconnected, then S is not in any
argument structure. If S is interconnected, then S is a LCS or LDS according to
definition 12.

Corollary2. If any two proper subsets of interconnected argument set S are of
two different types of SCS, SDS, LCS and LDS, then S is a mixed structure.
Proof. Follows from proposition 4.
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4.1. Reconsidering the Standard Approach

First, we consider the correspondence between the standard approach and our new
approach. It is easy to see that single, linked and serial arguments, respectively,
correspond to unit I, unit Il and multiple unit I arguments.

However, convergent and divergent arguments are not arguments any more,
since a convergent “argument” now is an argument structure consisting of a number
of distinct unit I arguments for the same conclusion, while a divergent “argument”
now is an argument structure consisting of a number of distinct unit I argument with
the same premise. For instance, in Examplel(1) there are two arguments 4—=>(C)
and B=(C) for the same conclusion (C), and in Examplel(2), there are two
arguments A= (B) and A=(C) with the same premise (4) where but different
conclusions.

Argument types
Standard . . .
single | linked serial complex
approach
New . . multiple multiple .
unit I | unit Il P " mixed
approach unit [ unit I1
Table 1. Comparison of Argument Types
Argument structures
Standard .
convergent | divergent complex
approach
serial serial linked linked .
New . . mixed
convergent | divergent | convergent | divergent
approach structure
structure structure structure structure

Table 2. Comparison of Argument Structures

Therefore, the classes of convergent, divergent “arguments” are not arguments

but argument structures. Actually, they correspond to the serial convergent structure
SCS and the serial divergent structure SDS. Moreover, the class of complex
arguments in the standard approach is not an argument if it contains SCS or SDS, but
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instead corresponds to the mixed argument structure MS. Otherwise, it corresponds
to a mixed argument.

From the above analysis we see that the standard approach is incomplete and,
moreover, does not distinguish types of individual argument from types of argument
structures. We can show the comparisons between the standard approach and our
new approach in Tablel and Table2. We can also conclude that the new
classification in terms of the ASPIC+ framework is helpful in clarifying and
complementing the standard approach.

5. The Problem of Hybrid Arguments

In this section we analyze why Vorobej’s class of hybrid arguments is not needed if
our approach is adopted. In our new approach, Vorobej's hybrid “argument” are not
arguments but argument structures consisting a number of arguments. More
specifically, they are of type mixed structure MS or linked convergent structure
LCS.

We first make a notion explicit and redefine a definition. In Vorobej (1995) the
notion of relevance is implicit and treated as a primitive dyadic relation. We note
that there are two kinds of relevance: defeasible relevance indicates the support from
a set of arguments to the conclusion via a defeasible inference, while strict relevance
indicates the support form a set of arguments to the conclusion via a strict inference.

In the ASPIC+ framework, we write St if there exists a strict argument for ¢
with all premises taken from S, and S|~ if there exists a defeasible argument for ¢
with all premises taken from S. Then Definition 4 can be rewritten as follows:

Definition13. A set of premises X supplements a set of premises A iff (1) b
Cand X+ @; (2) A~C; 3) YUAFCor XUA|~C, and (4) XU A is the minimal
set satisfying clauses (1),(2) and (3) when U AFC.

If a set of premises X={P;,------ ,P,} supplements a set of premises A={Q,,
~~~~~~ ,0.}, then we have two arguments 4 and B, where argument A4 is of the form
Qpyevene ,0,—~C and argument B is of the form Pj,.---- Py Opyeveees ,0,=~C or

Ppyeeen P Opyeeeeee ,0,—C.

Thus, the hybrid argument here is a (1) mixed structure MS consisting of a unit [
argument and a unit II argument, if m=1, or (2) a linked convergent structure LCS
consisting of two linked arguments, if m>1.

We now first reconsider Example 2.

e (F): (1) All the ducks that I’ ve seen on the pond are yellow. (2)
I’ve seen all the ducks on the pond. (3) All the ducks on the pond
are yellow.

Arguably, (1) supports (3) because of the defeasible inference rule of
enumerative induction:
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e All observed F’s are G’s = all F’s are G’s.
Moreover, (1) and (2) together arguably support (3) because of a deductive
version of enumerative induction:
e All observed F’s are G’s, all observed F’s are all F’s = all F’s are
G’s.
We then see that the apparently hybrid argument is in fact a convergent structure
consisting of two separate arguments for the same conclusion, sharing one premise:
e A4 =[1 = (3)] with a defeasible inference rule: All observed F’s
are G’s = all F’s are G’s;
e B =[1,2 = (3)] with a strict inference rule: All observed F’s are
G’s, all observed F’s are all F’s — all F’s are G’s.
Actually, all examples in Prakken (2010) can be reconstructed in terms of these
two kinds of structures:

Example4. Consider examples (G) and (J) as follows:

(G): (1) My duck is yellow. (2) Almost without exception, yellow ducks are
migratory. (3) My duck is no exception to any rule. (4) My duck migrates.

(H): (1) My duck is yellow. (2) Most yellow ducks, especially those born in
Ontario, are migratory. (3) My duck was born in Enterprise. (4) Enterprise
is in Ontario. (5) My duck is migratory.

In example (G), we have that {(1),(2)}|~(4) and {(1),(2),(3)}}-(4), so we have
two arguments 4 and B for the same conclusion:
e 4 =[1,2 =(4)] with a defeasible inference rule: almost without
exception X’s are Vs, aisa X=aisa ¥,
e B =112 .,3 —(4)] with a strict inference rule: almost without
exception X’s are ¥’s, a is a X, a is no exception to any rule X—a
isaY.
In example (H), there are two arguments 4 and B based on {(1),(2)}|~(5) and
{(1),2),3),H}~(5):
e A =[1,2= (5)] with a defeasible inference rule: Most X’s are !’s,
especially X’sbornin Z,aisaX = aisal;
e B =[1,2,3,4 = (5)] with a defeasible inference rule: Most X’s are
Y’s, especially X’sbornin Z, aisa X, abominy, yisin Z = a is
ayt.
On our account arguments in example (G) and (H) are both linked convergent
structures.

Example5. Consider examples (H) and (/) as follows:

e (D): (1) All the ducks that Data has seen on the pond are yellow. (2)
All the ducks that Dax has seen on the pond are yellow. (3) Data
has seen 96% of the ducks on the pond. (4) All the ducks on the
pond are yellow.
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e (J): (1) Data quacks. (2) Data has webbed feet. (3) 95% of those
creatures who both quack and have webbed feet are ducks. (4)
Data is a duck.

In example (I), there are two arguments A4, B based on {(1)}|~(4), {(1),(3)}|~(4)
(Note that argument based on {(1),(2),(3)}|~(4) is not an argument, since {(1),(2)} is
not the minimal set yielding (4) and then (3) does not supplement {(1),(2)}:

e 4 =[1 =(4)] with a defeasible inference rule: All observed F’s
are G’s = all F’s are G’s;

e (C=]1,3 =(4)] with a defeasible inference rule: All observed F’s
are G’s, 95% observed F' = all F’s are G’s.

In example (J), there are four arguments 4, B, C and D based on {(1)}|~(4),
{@)}~#), {(1),(2)}[~(4) and {(1),(2).(3)}I~(4):

e A4 =[1=>(4)] with a defeasible inference rule: x quacks = x is a
duck;

e B =[2 =(4)] with a defeasible inference rule: x has webbed feet
= xis a duck;

e (C =11, 2 =(4)] with a defeasible inference rule that aggregates
the two previous inference rules;

e D=J1,2,3 =(4)] with a defeasible inference rule: aisa ¥, a is a
Z,95% of x’s who are both Yand Zare T =aisaT.

On our account arguments in example (I) is a linked convergent structure and (J)
is a mixed structure.

Example6. Consider example (K) as follows:

e (K): (1) Data and Dax have the same diet. (2) Data and Dax
receive the same amount of exercise. (3) Data is a healthy
duck. (4) Dax is a healthy duck.

In example (K), there are three arguments 4, B and C based on {(1),(3)}|~(4),
{(2),(3)}|~(4) and {(1),(2),(3)}|~(4) (Note that no matter {(2)} supplements {(1),(3)}
or {(1)} supplements {(2),(3)}, it would follow {(1),(2),(3)}|~(4)):

e A4 =1[1,3 =(4)] with a defeasible inference rule: x and y have the
same diet, x is a healthy duck = y is a healthy duck;

e B =1[2,3 = (4)] with a defeasible inference rule: x and y receive
the same amount of exercise, x is a healthy duck = y is a healthy
duck;

e (C=1[1,2,3 = (4)] with a defeasible inference rule that aggregates
the two previous inference rules.

On our account arguments in example (K) is a linked convergent structure. The
diagrams of the arguments in above examples are displayed in Figure5.
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Figure 5. Diagrams of the Vorobej’s examples

6. The Problem of Accrual of Arguments

In this section, we discuss the structure of so-called accrual of arguments. It often
happens in natural arguments that several reasons support one proposition in such a
way that each reason is offered as additional support for the proposition. This is
called accrual of reasons or accrual of arguments.

In the AI literature many contributions (Gomez et al., 2009; Prakken, 2005;
Verheij, 1995) focus on the formalisation of accrual of arguments. For example,
Prakken (2010) presents the accrual of arguments as a form of inference in a
standard logical framework for defeasible argumentation.

We first show an example of accural of arguments. Suppose that P is “witness a
testifies ¢” and Q is “witness b testifies ¢”, then we have two arguments:
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A=[A=> ], where A4,;=[P] and B=[B=>], where B;=[Q] . Thus these two
arguments have the same conclusion \varphi with defeasible rule r:
testifies(x,;p)=> . According to the treatment of Prakken (2005) accrual is a new
form of inference, and the basic idea towards formalizing this special inference can
be divided into two points.

First, the conclusion of each individual defeasible inference step is labelled with
the premises of the applied defeasible inference rule. Given a set of defeasible
inference rules, they are slightly reformulated to the effect that their conclusions are
labelled with the set of their premises. So, defeasible modus ponens for = can be
defined as follows:

Pp=>Pgpl e =Y

Second, a new defeasible inference rule is introduced that takes any set of
labelled versions of a certain formula and produces the unlabelled version:

Note that the above labels will for readability often be abbreviated to /;,------ I
and the rule is a scheme for any natural number i such that 1 <i<n. Therefore, in the
above example we have a new inference rule: ¢ jv,wg’gjﬂwp and the accrual of
arguments of this example can be presented as C=[4,B=> ], where A=[4;=>¢] and
B=[B|=].

The accrual of arguments as formalized in Modgil and Prakken (2011) is
different from the notion of convergent arguments in informal approaches, since as
we have discussed, the so called convergent argument is an argument structure
rather than an argument. Actually, accrual of arguments is a mixed argument or
multiple unit II argument with defeasible inference rule @",----- .0 "I~ as toprule.
It should be noted that all subarguments of the accrual of arguments only have
defeasible top rules, since accrual would not make sense for strictly derived
conclusions. Then we can conclude the definition of the accrual of arguments as
follows:

Definition13. An argument A is an accrual of arguments with conclusion ¢ iff 4
is a multiple unit II argument or mixed argument with Toprule(A)= @ e R
]
713@'

We now reconsider example (K) and show the accrual of arguments inside.
According to the analysis in Example 6, there are two linked arguments for a same
conclusion with two inferences rules:

e 7,2 x and y have the same diet, x is a healthy duck = y is a healthy
duck;
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e 7, x and y receive the same amount of exercise, x is a healthy duck
= y is a healthy duck.

Arguably, there is an accrual argument for statement (4), accruing two arguments
A and B for (4) based on two labelled versions of (4), viz. (4)!™®"1} and (4)! @2,
Applying the accrual rule: (4){(1)’(3)’”}, (4)"(2)’(3)””%(4) to the above two reasons
results in a defeasible argument for (4), namely accrual argument C, which can be
represented as C=[4,B=>(4)], where A=[1,3=>(4)'"®"] and B=[2,3=>(4)'®®.
Actually, C is a multiple unit Il argument and its structure is shown in Figure 6:

RO RNC)

(4){(1),(3)} (4){(2),(3)}

“4)

Figure 6. An accrual of arguments

PropositionS. If a non-classic interconnected argument set S contains an
argument 4 which is an accrual of arguments, then
e it is a mixed structure, if S contains both unit I inferences and unit
1l inferences; or
e it is a linked convergent structure, if S only contains unit II
inferences.

Proof. Firstly, since argument A4 is an accrual of arguments, then by definition
14, A contains unit II inferences.

Secondly, suppose for contradiction that S is not a mixed structure. By
assumption and definition 12, S should be SCS, LCS, SDS or LDS, since S is non-
classic interconnected. But S contains either unit I or unit II, contradicting S contains
both unit I inferences and unit II inferences.

Thirdly, if S only contains unit II inferences and it is non-classic interconnected,
then by definition 12 it is easy to conclude that S'is a linked convergent structure.

Moreover, the interconnected argument set S consists of arguments in example
(K) which contains three arguments in Example 6 and one accrual of arguments we
have discussed. From the above proposition, since S only contains unit II inferences,
we have that S is a linked convergent structure.

Corollary3. If an argument is an accrual of arguments, then it must belong to a
set of arguments which is a LCS or MS.
Proof. Follows from proposition 5.

20



Defining the structure of arguments with an Al model of argumentation

7. Conclusion

In this paper we showed how Al models of argumentation can be used to clarify and
extend informal-logic approaches to the structure of arguments. We indicated that
the standard approach is incomplete and then defined a complete classification of
types of arguments in terms of the ASPIC+ framework. We highlighted that
convergent and divergent “arguments” in the standard approach are not arguments
but sets of arguments, which we have classified as argument structures. We also
showed that Vorobeij’s hybrid arguments can be defined in terms of our
classification if the distinction between deductive and defeasible inferences is made
explicit, thus obviating the need to introduce a new type of argument to handle the
examples discussed by Vorobeij. Finally, we applied the new approach to analyze
the structure of accrual of arguments and we defined it as two possible argument
types. We believe that our contributions are particularly relevant for argumentation
theory, since we have clarified and extended terminology concerning classifications
of arguments which is often used by argumentation theorists. Thus we have shown
how formal methods can be of use not just in Al but also in argumentation theory
and informal logic.
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