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Abstract

This chapter discusses how formal models of argumentation can clarify philosophical
problems and issues. Some of these arise in the field of epistemology, where it has been
argued that the principles by which knowledge can be acquired are defeasible. Other prob-
lems and issues originate from the fields of informal logic and argumentation theory, where
it has been argued that outside mathematics the standards for the validity of arguments are
context-dependent and procedural, and that what matters is not the syntactic form but the
persuasive force of an argument.

Formal models of argumentation are of two kinds. Argumentation logics formalise the
idea that an argument only warrants its conclusion if it can be defended against counterargu-
ments. Dialogue systems for argumentation regulate how dialogue participants can resolve
a conflict of opinion. This chapter discusses how argumentation logics can define non-
deductive consequence notions and how their embedding in dialogue systems for argumen-
tation can account for the context-dependent and procedural nature of argument evaluation
and for the dependence of an argument’s persuasive force on the audience in an argumenta-
tion dialogue.

Keywords: argumentation theory; critical discussion; defeasible reasoning; formal dialectics;
nonmonotonic logic; persuasion.

1 Introduction
Introductions to logic often portray logically valid inference as ‘foolproof’ reasoning: an argu-
ment is valid if the truth of its premises guarantees the truth of its conclusion. However, we
all construct arguments from time to time that are not foolproof in this sense but that merely
make their conclusion plausible when their premises are true. For example, if we are told that
Peter, a professor in economics, says that reducing taxes increases productivity, we conclude
that reducing taxes increases productivity since we know that experts are usually right within
their domain of expertise. Sometimes such arguments are defeated by counterarguments. For
example, if we are also told that Peter has political ambitions, we have to retract our previous
conclusion that he is right about the effect of taxes if we also believe that people with politi-
cal ambitions are often unreliable when it comes to taxes. Or, to use an example of practical
instead of epistemic reasoning, if we accept that reducing taxes increases productivity and that
increasing productivity is good, then we conclude that the taxes should be reduced, unless we
also accept that reducing taxes increases inequality, that this is bad and that equality is more
important than productivity. However, as long as such counterarguments are not available, we
are happy to live with the conclusions of our fallible arguments. The question is: are we then
reasoning fallaciously or is there still logic in our reasoning?

An answer to this question has been given in the development of argumentation logics. In a
nutshell, the answer is that there is such logic but that it is inherently dialectic: an argument only
warrants its conclusion if it is acceptable, and an argument is acceptable if, firstly, it is properly
constructed and, secondly, it can be defended against counterarguments. Thus argumentation
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logics must define three things: how arguments can be constructed, how they can be attacked
by counterarguments and how they can be defended against such attacks.

Argumentation logics are a form of nonmonotonic logic, since their notion of warrant is
nonmonotonic: new information may give rise to new counterarguments defeating arguments
that were originally acceptable. Besides a logical side, argumentation also has a dialogical side:
notions like argument, attack and defence naturally apply when (human or artificial) agents try
to persuade each other to adopt or give up a certain point of view.

This chapter1 aims to show how formal models of argumentation can clarify philosophical
problems and issues. Some of these arise in the field of epistemology. Pollock (1974) argued
that the principles by which knowledge can be acquired are defeasible. Later he made this
precise in a formal system (Pollock, 1995), which inspired the development of argumentation
logics in artificial intelligence (AI). Rescher (1977) also stressed the dialectical nature of theo-
ries of knowledge and presented a disputational model of scientific inquiry.

Other issues and problems originate from the fields of informal logic and argumentation
theory. In 1958, Stephen Toulmin launched his influential attack on the logic research of those
days, accusing it of only studying mathematical reasoning while ignoring other forms of rea-
soning, such as commonsense reasoning and legal reasoning (Toulmin, 1958). He argued that
outside mathematics the standards for the validity of arguments are context-dependent and pro-
cedural: according to him an argument is valid if it has been properly defended in a dispute,
and different fields can have different rules for when this is the case. Moreover, in his famous
argument scheme he drew attention to the fact that different premises can have different roles
in an argument (data, warrant or backing) and he noted the possibility of exceptions to rules
(rebuttals). Perelman argued that arguments in ordinary discourse should not be evaluated in
terms of their syntactic form but on their rhetorical potential to persuade an audience (Perel-
man and Olbrechts-Tyteca, 1969). These criticisms gave rise to the fields of informal logic and
argumentation theory, which developed notions like argument schemes with critical questions
and dialogue systems for argumentation. Many scholars in these fields distrusted or even re-
jected formal methods, but one point of this chapter is that formal methods can also clarify these
aspects of reasoning. Another claim often made in these fields is that arguments can only be
evaluated in the context of a dialogue or procedure. A second point of this paper is that this can
be respected by embedding logical in dialogical accounts of argumentation.

The philosophical problems to be discussed in this chapter then are:
- Can argumentation-based standards for non-deductive inference be defined?
- To what extent are these standards procedural?
- To what extent are they context-dependent?
- What is the nature of argument schemes?
- Can the use of arguments to persuade be formalised?

2 Dung’s abstract argumentation frameworks
In 1995 Phan Minh Dung introduced a now standard abstract formalism for argumentation-
based inference, which assumes as input nothing but a set (of arguments) ordered by a binary
relation (by Dung called ‘attack’ but in this chapter the term ‘defeat’ will be used).

Definition 2.1 An abstract argumentation framework (AF ) is a pair 〈A, Def 〉, where A is a
set arguments and Def ⊆ A × A is a binary relation of defeat. We say that an argument A
defeats an argument B iff (A,B) ∈ Def , and that A strictly defeats B if A defeats B while B
does not defeat A. A set S of arguments is said to defeat an argument A iff some argument in
S defeats A.

1An earlier version of this chapter has appeared as Prakken (2011).
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Dung (1995) defined four alternative semantics for AFs (over the years further semantics have
been proposed; cf. Baroni et al. (2011)). A semantics for AFs characterises so-called argument
extensions of AF ’s, that is, subsets of A that are in some sense coherent. One way to define
extensions is with labellings of AFs, which assign to zero or more members of Args either the
label in or out (but not both) satisfying the following constraints:

1. an argument is in iff all arguments defeating it are out.

2. an argument is out iff it is defeated by an argument that is in.

Stable semantics labels all arguments, while grounded semantics minimises and preferred se-
mantics maximises the set of arguments that are labelled in, and complete semantics allows all
labellings satisfying the two constraints. Let S ∈ {stable, preferred, grounded, complete} and
(In,Out) an S-status assignment. Then In is defined to be an S-extension.2

Some known facts (also holding for the corresponding extensions) are that each grounded,
preferred or stable labelling of an AF is also a complete labelling of that AF ; the grounded
labelling is unique but all other semantics allow for multiple labellings of an AF ; each AF has
a grounded and at least one preferred and complete labelling, but there are AF s without stable
labellings; and the grounded labelling of an AF is contained in all other labellings of that AF .

Then the acceptability status of arguments can be defined as follows:

Definition 2.2 For grounded semantics an argument A is justified iff A is in the grounded
extension; overruled iff A is not in the grounded extension but defeated by a member of the
grounded extension; defensible otherwise. For stable and preferred semantics an argument A
is justified iff A is in all stable/preferred extensions; overruled iff A is in no stable/preferred
extension; defensible otherwise.

Figure 1 illustrates the definitions with some example argumentation frameworks, where defeat
relations are graphically depicted as arrows.

Figure 1: four argumentation frameworks

In AF (a) all semantics produce the same unique labelling. Argument C is in by constraint
(1) since it has no defeaters, so B is out by constraint (2) since it is defeated by C, so A is in by
constraint (1) since C defeats B. So all semantics produce the same, unique extension, namely,
{A,C}. Hence in all semantics A and C are justified while B is overruled. It is sometimes said
that C reinstates, or defends A by defeating its defeater B.

In AF (b) grounded semantics does not label any of the arguments while preferred and
stable semantics produce two alternative labellings: one in which A is in and B is out and one
in which B is in and A is out. Hence the grounded extension is empty while the preferred-
and-stable extensions are {A} and {B}. All these extensions are also complete. Hence in all
semantics both A and B are defensible.

2This definition is different from but equivalent to Dung’s (1995) definition of extensions.
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AF (c) has no stable extensions since no argument can be labelled both in and out while
there is a unique grounded, preferred and complete extension, which is empty, generated by a
labelling which does not label any argument. Note that if a fourth argument D is added with
no defeat relations with the other three arguments, there is still no stable extension while the
unique grounded, preferred and complete extension is {D}.

Finally, AF (d) shows a difference between grounded and preferred semantics. The grounded
extension is empty, since A and B can be left unlabelled so that C and D are also unlabelled,
while the two preferred (and stable) extensions are {A,D} and {B,D}. Thus while in grounded
semantics all arguments are defensible, in preferred and stable semantics A and B are defensi-
ble, D is justified and C is overruled.

The above definitions characterise sets of arguments that are in some sense acceptable. In
addition, procedures have been studied for determining whether a given argument is a member
of such a set. Some take the form of an argument game between two players, a proponent
and an opponent of an argument. The precise rules of the game depend on the semantics the
game is meant to capture. The rules should be chosen such that the existence of a winning
strategy (in the usual game-theoretic sense) for the proponent of an argument corresponds to
the investigated semantic status of the argument, for example, ‘justified in grounded semantics’
or ‘defensible in preferred semantics’.

Because of space limitations we can give only briefly one example game. The following
game is sound and complete for grounded semantics in that the proponent of argument A has a
winning strategy just in case A is in the grounded extension. The proponent starts a game with
an argument and then the players take turns, trying to defeat the previous move of the other
player. In doing so, the proponent must strictly defeat the opponent’s arguments while he is not
allowed to repeat his own arguments. A game is terminated if it cannot be extended with further
moves. The player who moves last in a terminated game wins the game. Thus the proponent has
a winning strategy if he has a way to make the opponent run out of moves (from the implicitly
assumed AF ) whatever choice the opponent makes.

As remarked in the introduction, argumentation logics must define three things: how ar-
guments can be constructed, how they can be attacked and how they can be defended against
attacks. Dung’s abstract formalism only answers the third question. To answer the first two
questions, accounts are needed of argument construction and the nature of attack and defeat.
We next discuss a general framework for formulating such accounts.

3 An abstract framework for structured argumentation
The ASPIC+ framework (Prakken, 2010; Modgil and Prakken, 2013, 2014) aims to integrate
and further develop the main current formal models of structured argumentation. While some
of its design choices can perhaps be debated, the framework is still representative of work in
the field, for which reason we present it here. ASPIC+ gives structure to Dung’s arguments
and defeat relation. It defines arguments as inference trees formed by applying strict (→) or
defeasible (⇒) inference rules to premises formulated in some logical language. Informally,
if an inference rule’s antecedents are accepted, then if the rule is strict, its consequent must be
accepted no matter what, while if the rule is defeasible, its consequent must be accepted if there
are no good reasons not to accept it. Arguments can be attacked on their ‘ordinary’ premises
and on their applications of defeasible inference rules. Some attacks succeed as defeats; whether
this is so is partly determined by preferences. The acceptability status of arguments is then
defined by applying any of Dung (1995) semantics for abstract argumentation frameworks to
the resulting set of arguments with its defeat relation.

ASPIC+ is not a system but a framework for specifying systems. To start with, it defines
the notion of an abstract argumentation system as a structure consisting of a logical language L
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with a negation symbol ¬3, a setR consisting of two subsetsRs andRd of strict and defeasible
inference rules, and a naming convention n in L for defeasible rules in order to talk about the
applicability of defeasible rules in L. Thus, informally, n(r) is a wff in L which says that rule
r ∈ R is applicable. (as is usual, the inference rules in R are defined over the language L and
are not elements in the language.)

Definition 3.1 An argumentation system is a triple AS = (L,R, n) where:
- L is a logical language with a negation symbol ¬.
- R = Rs ∪ Rd is a set of strict (Rs) and defeasible (Rd) inference rules of the form ϕ1,

. . . , ϕn → ϕ and ϕ1, . . . , ϕn ⇒ ϕ respectively (where ϕi, ϕ are meta-variables ranging
over wff in L), andRs ∩Rd = ∅.

- n : Rd −→ L is a naming convention for defeasible rules.
We write ψ = −ϕ just in case ψ = ¬ϕ or ϕ = ¬ψ (we will sometimes informally say that
formulas ϕ and −ϕ are each other’s negation).

Henceforth, a set S ⊆ L is said to be directly consistent iff @ ψ, ϕ ∈ S such that ψ = −ϕ,
otherwise S is directly inconsistent. And S is said to be indirectly (in)consistent if its closure
under application of strict inference rules is directly (in)consistent.

Definition 3.2 A knowledge base in an AS = (L,R, n) is a set K ⊆ L consisting of two
disjoint subsets Kn (the axioms) and Kp (the ordinary premises).

Intuitively, the axioms are certain knowledge and thus cannot be attacked, whereas the ordinary
premises are uncertain and thus can be attacked.

Definition 3.3 An argumentation theory is a tuple AT = (AS,K) where AS is an argumenta-
tion system and K is a knowledge base in AS.

ASPIC+ arguments are now defined relative to an argumentation theory AT = (AS,K), and
chain applications of the inference rules from AS into inference graphs (which are trees if no
premise is used more than once), starting with elements from the knowlege base K. Arguments
thus contain subarguments, which are the structures that support intermediate conclusions (plus
the argument itself and its premises as limiting cases). In what follows, for a given argument
the function Prem returns all its premises, Conc returns its conclusion, Sub returns all its sub-
arguments, DefRules returns all defeasible rules of an argument and TopRule returns the final
rule applied in the argument.

Definition 3.4 An argument A on the basis of an argumentation theory with a knowledge base
K and an argumentation system (L,R, n) is any structure obtainable by applying one or more
of the following steps finitely many times:

1. ϕ if ϕ ∈ K with Prem(A) = {ϕ}; Conc(A) = ϕ; Sub(A) = {ϕ}; DefRules(A) = ∅;
TopRule(A) = undefined.

2. A1, . . . An →/⇒ ψ4 ifA1, . . . , An are arguments such that there exists a strict/defeasible
rule Conc(A1), . . . , Conc(An)→/⇒ ψ inRs/Rd.
Prem(A) = Prem(A1) ∪ . . . ∪ Prem(An),
Conc(A) = ψ,
Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A}.
DefRules(A) = DefRules(A1) ∪ . . . ∪ DefRules(An);
TopRule(A) = Conc(A1), . . . , Conc(An)→/⇒ ψ.

3In most papers on ASPIC+ negation can be non-symmetric. In this paper we present the special case with sym-
metric negation.

4→/⇒ means that the rule is a strict, respectively, defeasible rule.
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Then A is: strict if DefRules(A) = ∅; defeasible if DefRules(A) 6= ∅; firm if Prem(A) ⊆
Kn; plausible if Prem(A) ⊆ Kp.

Example 3.5 Consider a knowledge base in an argumentation system with Rs = {p, q →
s; u, v → w}; Rd = {p ⇒ t; s, r, t ⇒ v}; Kn = {q}; Kp = {p, r, u}. An argument for w
is displayed in Figure 2. The type of a premise is indicated with a superscript and defeasible
inferences and attackable premises and conclusions are displayed with dotted lines. Formally

Figure 2: An argument

the argument and its subarguments are written as follows:

A1: p A5: A1 ⇒ t
A2: q A6: A1, A2 → s
A3: r A7: A5, A3, A6 ⇒ v
A4: u A8: A7, A4 → w

We have that

Prem(A8) = {p, q, r, u}
Conc(A8) = w
Sub(A8) = {A1, A2, A3, A4, A5, A6, A7, A8}
DefRules(A8) = {p⇒ t; s, r, t⇒ v}
TopRule(A8) = u, v → w

Arguments can be attacked in three ways: on their premises (undermining attack), on their
conclusion (rebutting attack) or on an inference step (undercutting attack). The latter two are
only possible on applications of defeasible inference rules.

Definition 3.6 A attacks B iff A undercuts, rebuts or undermines B, where:
• A undercuts argument B (on B′) iff Conc(A) = −n(r) for some B′ ∈ Sub(B) such that B′’s
top rule r is defeasible.
• A rebuts argument B (on B′) iff Conc(A) = −ϕ for some B′ ∈ Sub(B) of the form
B′′

1 , . . . , B
′′
n ⇒ ϕ.

• Argument A undermines B (on B′) iff Conc(A) = −ϕ for some B′ = ϕ, ϕ ∈ Kp.

In Example 3.5 argument A8 can be undercut on two of its subarguments, namely, A5 and A7.
An undercutter of A5 must have a conclusion −ϕ where n(p ⇒ t) = ϕ while an undercutter
of A5 must have a conclusion −ϕ where n(s, r, t ⇒ w) = ϕ. Argument A8 can be rebutted
on A5 with an argument for −t and on A7 with an argument for −v. Moreover, if the rebuttal
of A5 has a defeasible top rule, then A5 in turn rebuts the argument for −t. However, A8 itself
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does not rebut that argument, except in the special case where w = − − t. Finally, argument
A8 can be undermined with an argument that has conclusion −p, −r or −u.

Attack relations between arguments can be resolved with an ordering on arguments. To
formalise this, the notion of a structured argumentation framework is introduced.

Definition 3.7 Let AT be an argumentation theory (AS,KB). A structured argumentation
framework (SAF) defined by AT is a triple 〈A, Att , � 〉 where

- A is the all arguments on the basis of AT ;
- � is an ordering on A;
- (X,Y ) ∈ Att iff X attacks Y .

Modgil and Prakken (2013) also study a variant of this definition in which arguments are re-
quired to have indirectly consistent premises.

Now attacks combined with the argument ordering yield three kinds of defeat. For un-
dercutting attack no preferences are needed to make it succeed, since undercutters are explicit
exceptions to the rule they undercut. Rebutting and undermining attacks succeed only if the
attacked argument is not stronger than the attacking argument.

Definition 3.8 A defeatsB iff: A undercutsB, or;A rebuts/underminesB onB′ andA ⊀ B′.5

A strictly defeats B iff A defeats B and B does not defeat A

The success of rebutting and undermining attacks thus involves comparing the conflicting argu-
ments at the points where they conflict. The definition of successful undermining exploits the
fact that an argument premise is also a subargument.

The ASPIC+ framework assumes the argument ordering as given. It may depend on all sorts
of standards, such as statistical strength of generalisations, reliability of information sources,
preferences over outcomes of actions, or norm hierarchies. In many contexts such standards
can themselves be argued about. One way to formalise this is by using Modgil’s (2009) idea
to decompose the defeat relation of Dung (1995)’s abstract argumentation frameworks into a
more basic attack relation and to allow attacks on attacks in addition to attacks on arguments.
Combined with ASPIC+, the idea is that if argument C claims that argument B is preferred to
argument A, and A attacks B, then C undermines the success of A’s attack on B (i.e., A does
not defeat B) by pref-attacking A’s attack on B.

Recall that argumentation logics must define three things: how arguments can be con-
structed, how they can be defeated and how they can be defended against defeating counter-
arguments. While Dung’s abstract argumentation semantics addresses the last issue, we can
now combine it with the ASPIC+ framework to address the first two issues.

Definition 3.9 An abstract argumentation framework (AF) corresponding to a SAF = 〈A, Att ,
� 〉 is a pair (A,Def ) such that Def is the defeat relation on A determined by 〈A, Att , � 〉.

The justified arguments of the above defined AF are then defined under various semantics, as in
Definition 2.2. We now see that an argument can be defended against attacks in two ways: by
showing that the attacker is inferior to it or by defeating the attacker with a counterattack that
reinstates the original argument.

We can now finally define an argumentation-based consequence notion for well-formed
formulas (relative to an AT and with respect to any given semantics):

Definition 3.10 A wff ϕ ∈ L is justified if ϕ is the conclusion of a justified argument, and
defensible if ϕ is not justified and is the conclusion of a defensible argument.

An alternative definition of a justified wff is to say that every extension contains an argument
with the wff as its conclusion. Unlike the above definition, this alternative definition allows

5X ≺ Y means as ususal that X � Y and Y 6� X .
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different extensions containing different arguments for a justified conclusion. This is similar to
the different treatments that semantics for abstract argumentation give to Figure 1d.

One possible analysis of this difference is that some semantics, or some definitions of jus-
tification, are better than others, but an alternative analysis is that different definitions capture
different senses or strengths of justification, which each may have their use in certain contexts.
For example, in the law, criminal cases require higher proof standards than civil cases. And
while in domains like the law and medicine defeasible arguments are acceptable, in the field of
mathematics all arguments must, of course, be deductive. Thus we see how our formal frame-
work for argumentation can make sense of Toulmin’s claim that the standards for the validity of
arguments are context-dependent.

In addition, the kind of reasoning can be relevant, such as the distinction between epistemic
and practical reasoning. If, for instance, two incompatible actions (say reducing and increasing
taxes) have two different good consequences (say increasing productivity and increasing equal-
ity in society) and there is no reason to prefer one consequence over the other, then an arbitrary
choice is (all other things being equal) rational. If, on the other hand, two experts disagree about
whether reducing taxes increases productivity, then an arbitrary choice for one of them seems
irrational. So it might be argued that in practical reasoning a defensible conclusion can be good
enough while in epistemic reasoning we should aim for justified conclusions.

4 The nature of inference rules
While we now have a general framework for the definition of argumentation logics, much more
can be said. To start with, the framework can be instantiated in many ways, so there is a need
for principles that can be used in assessing the quality of instantiations. Caminada and Amgoud
(2007) formulated several so-called rationality postulates, namely, that each extension should
be closed under subarguments and under strict rule application, and be directly and indirectly
consistent. ASPIC+ unconditionally satisfies the two closure postulates while Prakken (2010)
and Modgil and Prakken (2013) identify conditions under which some broad classes of instan-
tiations satisfy the two consistency postulates.

The next question is, what are ‘good’ collections of strict and defeasible inference rules? In
AI there is a tradition to let inference rules express domain-specific information, such as all pen-
guins are birds or birds typically fly. This runs counter to the usual practice in logic, in which
inference rules express general patterns of reasoning, such as modus ponens, universal instanti-
ation and so on. This practice is also followed in systems for so-called classical argumentation
(Besnard and Hunter, 2008), in which arguments from a possibly inconsistent knowledge base
are classical proofs from consistent subsets of the knowledge base. These systems are in fact
a special case of the ASPIC+ framework with L being the language of standard propositional
or first-order logic, the strict rules being all valid propositional or first-order inferences, with
no defeasible rules and no axiom premises, and with the premises of all arguments required to
be indirectly consistent. In this approach (which can be generalised to other deductive logics)
arguments can thus only be sensibly attacked on their premises.

While this approach has some merits, it is doubtful whether all argumentation can be re-
duced to inconsistency handling in some deductive logic. In particular John Pollock strongly
emphasized the importance of defeasible reasons in argumentation. He was quite insistent that
defeasible reasoning is not just some exotic, exceptional, add-on to deductive reasoning but is,
instead, an essential ingredient of our cognitive life:

. . . we cannot get around in the world just reasoning deductively from our prior
beliefs together with new perceptual input. This is obvious when we look at the
varieties of reasoning we actually employ. We tend to trust perception, assuming
that things are the way they appear to us, even though we know that sometimes
they are not. And we tend to assume that facts we have learned perceptually will
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remain true, as least for a while, when we are no longer perceiving them, but of
course, they might not. And, importantly, we combine our individual observations
inductively to form beliefs about both statistical and exceptionless generalizations.
None of this reasoning is deductively valid. (Pollock, 2009, p. 173)

Here the philosophical distinction between plausible and defeasible reasoning is relevant; see
Rescher (1976, 1977) and Vreeswijk (1993, Ch. 8). Plausible reasoning is valid deductive rea-
soning from an uncertain basis while defeasible reasoning is deductively invalid (but still ratio-
nal) reasoning from a solid basis. In these terms, models of deductive argumentation formalize
plausible reasoning, while Pollock modeled defeasible reasoning and the ASPIC+ framework
gives a unified account of these two kinds of reasoning.

There is also semantic support for the idea of defeasible inference rules. Consider, for exam-
ple, the statistical generalisation men usually have no beard. Concluding from this that people
with a beard are usually not men is a so-called ‘base rate fallacy’ (Tversky and Kahneman,
1974). If (epistemic) defeasible reasoning is reduced to inconsistency handling in deductive
logic, such fallacies are easily committed. Likewise, it has been argued that reasons of practical
and normative reasoning are inherently defeasible; cf. e.g. Raz (1975).

While the case for defeasible inference rules thus seems convincing, the question remains
what are ‘good’ defeasible inference rules, especially if they are to express general patterns of
inference. Here two bodies of philosophical work are relevant, namely, Pollock’s (1974; 1995)
notion of defeasible reasons and argumentation-theory’s notion of argument schemes (Walton
et al., 2008). Pollock’s defeasible reasons are general patterns of epistemic defeasible reason-
ing. He formalised reasons for perception, memory, induction, temporal persistence and the
statistical syllogism, as well as undercutters for these reasons. In the ASPIC+ framework Pol-
lock’s defeasible reasons can be expressed as schemes (in the logical sense, with metavariables
ranging over L) for defeasible inference rules. The same analysis applies to argument schemes,
which are stereotypical non-deductive patterns of reasoning. Uses of argument schemes are
evaluated in terms of critical questions specific to the scheme. In the literature on argumen-
tation theory many collections of argument schemes have been proposed, both for epistemic,
practical and evaluative reasoning. An example of an epistemic argument scheme is the scheme
from expert opinion (Walton et al., 2008, p. 310):

E is an expert in domain D, E asserts that P is true, P is within D, therefore
presumably P is true

Walton et al. (2008) give this scheme six critical questions: (1) IsE credible as an expert source?
(2) Is E an expert in domain D? (3) What did E assert that implies P ? (4) Is E personally
reliable as a source? (5) Is P consistent with what other experts assert? (6) Is E’s assertion of
P based on evidence?

A practical argument scheme is the scheme from good (bad) consequences (here in a for-
mulation that deviates from Walton et al. (2008) to stress its abductive nature):

Action A results in P , P is good (bad), therefore all other things being equal A
should (not) be done.

This scheme is usually given two critical questions: (1) Does A result in P ? (2) Does A also
result in something which is bad (good)? (3) (When P is concluded to be good) Is there another
way to realise P ?

In ASPIC+, argument schemes can also be formalised as schemes for defeasible inference
rules; then critical questions are pointers to counterarguments. In the scheme from expert opin-
ion questions (2) and (3) point to underminers (of, respectively, the first and second premise),
questions (4), (1) and (6) point to undercutters (the exceptions that the expert is biased or incred-
ible for other reasons and that he makes scientifically unfounded statements) while question (5)
points to rebutting applications of the expert opinion scheme. In the scheme from good (bad)
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consequences question (1) points to underminers of the first premise, question (2) points to
rebuttals using the opposite version of the scheme while question (3) points to undercutters.

This account of argument schemes can also clarify Toulmin’s (1958) distinction between
warrants (rule-like premises) and backings of warrants. For example, a warrant can be that
smoking causes cancer while its backing can be an expert opinion: then the defeasible inference
rule expressing the scheme from expert opinion allows to infer the warrant from the backing.

Let us illustrate the just-proposed modelling of defeasible reasons and argument schemes
with an example. The logical language L is informally assumed to be a first-order language
augmented with a conditional for defeasible generalisations,Rs consists of all deductively valid
inferences over L andRd consists of the above schemes from expert opinion (e) and from good
(gc) and bad (bc) consequences, plus a modus ponens scheme (dmp) for defeasible generalisa-
tions. Consider then the following arguments (where premise arguments are assumed to be in
Kp and defeasible inferences are labelled with the inference rule they apply).

A1: P says “lowering taxes increases productivity”
A2: P is an expert in economics
A3: “lowering . . . productivity” is about economics
A4: A1, A2, A3 ⇒e lowering . . . productivity B1: lowering taxes increases inequality
A5: Increased productivity is good B2: Increased inequality is bad
A6: A4, A5 ⇒gc taxes should be lowered B3: B1, B2 ⇒bc taxes should not be lowered

C1: P has political ambitions D1: P is never on TV
C2: people with political ambitions are usually D2: people who are never on TV usually

not reliable about taxes have no political ambitions
C3: C1, C2 ⇒dmp P is not reliable about taxes D3: D1, D2 ⇒dmp P has no political ambitions
C4: Rule e does not apply to unreliable people
C5: C3, C4 → Rule e does not apply to P

ArgumentsA6 andB3 rebut each other. AssumeB3 ≺ A6 soA6 strictly defeatsB3. Assuming
the obvious naming convention, argument C5 undercuts A6 on A4 and so defeats both, while
D3 undermines C5 on C1 and C1 in turn rebuts D3. At this point we know that all unattacked
premise arguments are justified in any semantics, since they have no defeaters. For the re-
maining arguments, suppose first D3 ≺ C1. Then C1 strictly defeats D3, so in any semantics
D3, A4 and A6 are overruled, while all Ci and B3 are justified. Suppose next C1 ≺ D3. Then
D3 strictly defeats C3 and C5 by strictly defeating C1, so in any semantics D3 and all Ai are
justified, while C1, C3, C5 and B3 are overruled. Suppose finally that neither C1 ≺ D3 nor
D3 ≺ C1. Then C1 and D3 defeat each other so, even though D3 still strictly defeats C3 and
C5, in any semantics all non-premise arguments plus C1 are defensible.

5 Argumentation as a form of dialogue
As stated in the introduction, argumentation theorists often claim that arguments can only be
evaluated in the context of a dialogue or procedure. More specifically, Walton (1996) regards
argument schemes as dialogical devices, determining dialectical obligations and burdens of
proof. An argument is a move in a dialogue and the scheme that it instantiates determines the
allowed and required responses to that move. At first sight, our account of argument schemes
as defeasible inference rules would seem to be incompatible with Walton’s dialogical account.
However, these two accounts can be reconciled by embedding argumentation logics in dialogue
systems for argumentation.

While argumentation logics define notions of consequence from a given body of informa-
tion, dialogue systems for argumentation (Walton and Krabbe, 1995) regulate disputes between
real agents, who each have their own body of information, and who may be willing to learn
from each other so that their information state may change. Moreover, during the dialogue they
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may construct a joint theory on the issue in dispute, which also evolves over time. Essentially,
dialogue systems define a communication language (the well-formed utterances) and a protocol
(when a well-formed utterance may be made and when the dialogue terminates).

Consider the following simple example, with a dialogue system that allows players to move
arguments and to challenge, concede or retract premises and conclusions of these arguments.
Each challenge must be answered with a ground for the challenged statement or else the state-
ment must be retracted. The two agents have their own knowledge base but a shared ASPIC+ ar-
gumentation system with a propositional language and three defeasible inference rules: p⇒ q,
r ⇒ p and s ⇒ ¬r. Paul’s and Olga’s knowledge bases contain, respectively, single ordinary
premises p and r. Let us assume that all arguments are of equal preference. Paul wants to per-
suade Olga that q is the case. He can internally construct the following argument for q: A1: r,
A2:A1 ⇒ p,A3:A2 ⇒ q. However, a well-known argumentation heuristic says that arguments
in dialogue should be made as sparse as possible in order to avoid attacks. Therefore, Paul only
utters the last step in the argument, hoping that Olga will accept p so that Paul does not have to
defend r. This leads to the following dialogue.

P1: q since p O1: why p
P2: p since r O2: ¬r since s
P3: retract r, retract q

What has happened here? If Olga had been a trusting person who concedes a statement if she
cannot construct an argument for the opposite, then she would have conceded p and q after
P1. But q is not a justified conclusion from the joint knowledge bases, so this outcome is
undesirable. In fact, Olga was less trusting and first asked Paul for his reasons for p. Since Paul
was honest, he gave his true reasons, which allowed Olga to discover that she could attack Paul
with an undermining counterargument. Paul could not defend himself against this attack, so he
realised that he cannot persuade Olga that q is true; he therefore retracted r and q.

Argumentation logic applies here in several ways. It can model the agents’ internal rea-
soning but it can also be applied at each dialogue stage to the joint theory that the agents have
created at that stage. For example, after O2 the logic says that q is overruled on the basis of
Kn = ∅,Kp = {p, r, s} while after P4 the logic says that no argument for q can be constructed
on the basis of Kn = ∅,Kp = {p, s}. Argumentation logic can also be used as a component of
notions of soundness and completeness of protocols, such as:

- A protocol is sound if whenever at termination p is accepted, p is justified by the partici-
pants’ joint knowledge bases.

- A protocol is weakly complete if whenever p is justified by the participants’ joint knowl-
edge bases, there is a legal dialogue at which at termination p is accepted.

- A protocol is strongly complete if whenever p is justified by the participants’ joint knowl-
edge bases, all legal dialogues terminate with acceptance of p.

These notions can also be defined relative to the joint theory constructed during a dialogue, or
made conditional on particular agent strategies and heuristics (for example, a protocol could be
sound and complete on the condition that all agents are honest but not trusting).

We can now without giving up the idea of an argumentation logic make sense of the claim
that arguments should be evaluated in the context of a dialogue or procedure. The dialogue
provides the relevant statements and arguments at each stage of the dialogue. The logic then
determines the justified arguments at that stage. The logic also points at the importance of
investigation. Since arguments can be defeated by counterarguments, the search for information
that gives rise to counterarguments is an essential part of testing an argument’s viability: the
more thorough this search has been, the more confident we can be that an argument is justified
if we cannot find defeaters. The ultimate justification of an argument is then determined by
applying the logic to the final information state. Thus the ultimate justification of an argument
depends on both logic and dialogue, or more generally on both logic and investigation.
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On this account the critical questions of argument schemes have a dual role. On the one
hand they define possible counterarguments to arguments constructed with the scheme (logic)
while on the other hand they point at investigations that could be done to find such counterar-
guments (dialogue and procedure). This account also gives a further explanation why argument
evaluation is context dependent, since different contexts may require different protocols for di-
alogue: when a decision has to be reached in reasonable time (as in a business meeting), a
protocol may be more restrictive than in settings like academic debate. For example, the right
to give alternative replies to a move may be restricted so that agents are forced to think what is
their best reply.

Finally, on this account persuasiveness of arguments can be modelled as follows. Each dia-
logical agent has an internal argumentation theory and evaluates incoming arguments in terms
of how they fit with the AF that it can internally generate. Given an acceptance attitude the
agent will either accept the argument’s premises and/or conclusion, or attack it with a counterar-
gument, or ask for further grounds for a premise. Personality models can help modelling which
types of arguments an agent of a certain type tends to accept. This gives a third way in which
argument evaluation is context-dependent: the persuasive force of an argument depends on the
listener. Current work of this kind is still preliminary but fascinating and promising (see e.g.
the proceedings of the annual ArgMas workshops on argumentation in multi-agent systems). In
fact this work provides a formal or even computational account of Perelman’s New Rhetoric
(Perelman and Olbrechts-Tyteca, 1969).

6 Conclusion
In this chapter we discussed five philosophical problems concerning argumentation. We first
showed how argumentation-based standards for non-deductive inference can be defined, by
presenting an abstract framework for argument evaluation given a set of arguments and their
attack and defeat relations, and by supplementing it with accounts of argument construction
and the nature of attack and defeat. We then clarified how a dialogical account of argument
evaluation can be given in formal terms, by discussing the embedding of argumentation logics
in dialogue systems for argumentation. This embedding also clarified the nature of argument
schemes: argument schemes can be seen as defeasible inference rules and their critical ques-
tions as pointers to counterarguments. We also clarified how the use of arguments to persuade
can be formalised, by adding the notions of argumentation strategies and heuristics and sug-
gesting the use of personality models of argumentative agents. Finally, we gave several reasons
why argument evaluation is context-dependent: different domains may have different sets of
argument schemes, different contexts may require more or less strict semantics and/or protocols
for dialogue and the persuasive force of arguments may depend on the listener.
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